Wu Zhuang, Shao Xin, Zhu Bifeng, Wang Lina, Lu Bo, Trabelsi Tarek, Francisco Joseph S, Zeng Xiaoqing
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, PA, 19104-6243, USA.
Commun Chem. 2022 Feb 17;5(1):19. doi: 10.1038/s42004-022-00637-z.
The atmospheric oxidation of dimethyl sulfide (DMS) yields sulfuric acid and methane sulfonic acid (MSA), which are key precursors to new particles formed via homogeneous nucleation and further cluster growth in air masses. Comprehensive experimental and theoretical studies have suggested that the oxidation of DMS involves the formation of the methylthio radical (CHS•), followed by its O-oxidation reaction via the intermediacy of free radicals CHSO• (x = 1-4). Therefore, capturing these transient radicals and disclosing their reactivity are of vital importance in understanding the complex mechanism. Here, we report an optimized method for efficient gas-phase generation of CHS• through flash pyrolysis of S-nitrosothiol CHSNO, enabling us to study the O-oxidation of CHS• by combining matrix-isolation spectroscopy (IR and UV-vis) with quantum chemical computations at the CCSD(T)/aug-cc-pV(X + d)Z (X = D and T) level of theory. As the key intermediate for the initial oxidation of CHS•, the peroxyl radical CHSOO• forms by reacting with O. Upon irradiation at 830 nm, CHSOO• undergoes isomerization to the sulfonyl radical CHSO• in cryogenic matrixes (Ar, Ne, and N), and the latter can further combine with O to yield another peroxyl radical CHS(O)OO• upon further irradiation at 440 nm. Subsequent UV-light irradiation (266 nm) causes dissociation of CHS(O)OO• to CHSO•, CHO, SO, and SO. The IR spectroscopic identification of the two peroxyl radicals CHSOO• and CHS(O)OO• is also supported by O- and C-isotope labeling experiments.
二甲基硫醚(DMS)的大气氧化会产生硫酸和甲磺酸(MSA),它们是通过均相成核在气团中形成新颗粒以及进一步团簇生长的关键前体。全面的实验和理论研究表明,DMS的氧化涉及甲硫基自由基(CHS•)的形成,随后通过自由基CHSO•(x = 1 - 4)中间体进行O氧化反应。因此,捕获这些瞬态自由基并揭示它们的反应性对于理解复杂机制至关重要。在这里,我们报告了一种通过S-亚硝基硫醇CHSNO的快速热解高效气相生成CHS•的优化方法,使我们能够通过将基质隔离光谱(红外和紫外可见)与CCSD(T)/aug-cc-pV(X + d)Z(X = D和T)理论水平的量子化学计算相结合来研究CHS•的O氧化。作为CHS•初始氧化的关键中间体,过氧自由基CHSOO•通过与O反应形成。在830 nm照射下,CHSOO•在低温基质(Ar、Ne和N)中异构化为磺酰自由基CHSO•,后者在440 nm进一步照射下可与O进一步结合生成另一个过氧自由基CHS(O)OO•。随后的紫外光照射(266 nm)导致CHS(O)OO•解离为CHSO•、CHO、SO和SO。O和C同位素标记实验也支持了对两个过氧自由基CHSOO•和CHS(O)OO•的红外光谱鉴定。