Campbell Family Mental Health, Centre for Addiction and Mental Health, Toronto, Canada.
School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
Behav Res Methods. 2024 Jan;56(1):417-432. doi: 10.3758/s13428-022-02044-7. Epub 2023 Jan 25.
Occupations are typically characterized in nominal form, a format that limits options for hypothesis testing and data analysis. We drew upon ratings of knowledge, skills, and abilities for 966 occupations listed in the US Department of Labor's Occupational Classification Network (ONET) database to create an accessible, standardized multidimensional space in which occupations can be quantitatively localized and compared. Principal component analysis revealed that the occupation space comprises three main dimensions that correspond to (1) the required amount of education and training, (2) the degree to which an occupation falls within a science, technology, engineering, and mathematics (STEM) discipline versus social sciences and humanities, and (3) whether occupations are more mathematically or health related. Additional occupational spaces reflecting cognitive versus labor-oriented categories were created for finer-grained characterization of dimensions within occupational sets defined by higher or lower required educational preparation. Data-driven groupings of related occupations were obtained with hierarchical cluster analysis (HCA). Proof-of-principle was demonstrated with a real-world dataset (470 participants from the Nathan Kline Institute - Rockland Sample; NKI-RS), whereby verbal and non-verbal abilities-as assessed by standardized testing-were related to the STEM versus social sciences and humanities dimension. Visualization of Latent Components Assessed in ONet Occupations (VOLCANO) is provided to the research community as a freely accessible tool, along with a Shiny app for users to extract quantitative scores along the relevant dimensions. VOLCANO brings much-needed standardization to unwieldy occupational data. Moreover, it can be used to create new occupational spaces customized to specific research domains.
职业通常以名词形式表示,这种形式限制了假设检验和数据分析的选项。我们根据美国劳工部职业分类网络(ONET)数据库中列出的 966 种职业的知识、技能和能力评级,创建了一个可访问的标准化多维空间,使职业可以在其中进行定量定位和比较。主成分分析显示,职业空间由三个主要维度组成,分别对应于(1)所需的教育和培训量,(2)职业属于科学、技术、工程和数学(STEM)学科与社会科学和人文学科的程度,以及(3)职业是更偏向数学还是健康相关。为了更精细地描述由较高或较低教育要求定义的职业组内的维度,还创建了反映认知与劳动导向类别的其他职业空间。使用层次聚类分析(HCA)获得了相关职业的分组。通过真实数据集(来自 Nathan Kline Institute - Rockland Sample 的 470 名参与者;NKI-RS)进行了原理验证,其中通过标准化测试评估的言语和非言语能力与 STEM 与社会科学和人文学科维度相关。作为一个免费工具,向研究社区提供了评估 ONet 职业的潜在成分的可视化(VOLCANO),以及一个 Shiny 应用程序,用户可以沿着相关维度提取定量分数。VOLCANO 为棘手的职业数据带来了急需的标准化。此外,它可以用于创建针对特定研究领域定制的新职业空间。