Microbiology Consulting, Didsbury, Manchester, UK.
Infectious Diseases and Vaccines, Johnson & Johnson, Cambridge, MA, USA.
J Antimicrob Chemother. 2023 Mar 2;78(3):569-585. doi: 10.1093/jac/dkac449.
This article reviews resistance to ceftazidime/avibactam as an aspect of its primary pharmacology, linked thematically with recent reviews of the basic in vitro and in vivo translational biology of the combination (J Antimicrob Chemother 2022; 77: 2321-40 and 2341-52). In Enterobacterales or Pseudomonas aeruginosa, single-step exposures to 8× MIC of ceftazidime/avibactam yielded frequencies of resistance from <∼0.5 × 10-9 to 2-8 × 10-9, depending on the host strain and the β-lactamase harboured. β-Lactamase structural gene mutations mostly affected the avibactam binding site through changes in the Ω-loop: e.g. Asp179Tyr (D179Y) in KPC-2. Other mutations included ones proposed to reduce the permeability to ceftazidime and/or avibactam through changes in outer membrane structure, up-regulated efflux, or both. The existence, or otherwise, of cross-resistance between ceftazidime/avibactam and other antibacterial agents was also reviewed as a key element of the preclinical primary pharmacology of the new agent. Cross-resistance between ceftazidime/avibactam and other β-lactam-based antibacterial agents was caused by MBLs. Mechanism-based cross-resistance was not observed between ceftazidime/avibactam and fluoroquinolones, aminoglycosides or colistin. A low level of general co-resistance to ceftazidime/avibactam was observed in MDR Enterobacterales and P. aeruginosa. For example, among 2821 MDR Klebsiella spp., 3.4% were resistant to ceftazidime/avibactam, in contrast to 0.07% of 8177 non-MDR isolates. Much of this was caused by possession of MBLs. Among 1151 MDR, XDR and pandrug-resistant isolates of P. aeruginosa from the USA, 11.1% were resistant to ceftazidime/avibactam, in contrast to 3.0% of 7452 unselected isolates. In this case, the decreased proportion susceptible was not due to MBLs.
本文回顾了头孢他啶/阿维巴坦耐药性作为其主要药理学的一个方面,这与最近对该组合的基础体外和体内转化生物学的综述主题相关(J Antimicrob Chemother 2022; 77: 2321-40 和 2341-52)。在肠杆菌科或铜绿假单胞菌中,单次暴露于 8× MIC 的头孢他啶/阿维巴坦,根据宿主菌株和携带的β-内酰胺酶,耐药频率从<∼0.5×10-9到 2-8×10-9不等。β-内酰胺酶结构基因突变主要通过改变 Ω 环影响阿维巴坦结合位点:例如,KPC-2 中的天冬氨酸 179 到酪氨酸(D179Y)。其他突变包括被认为通过改变外膜结构、上调外排或两者兼而降低头孢他啶和/或阿维巴坦通透性来减少耐药性的突变。还回顾了头孢他啶/阿维巴坦与其他抗菌药物之间的交叉耐药性作为该新型药物临床前主要药理学的关键要素。头孢他啶/阿维巴坦与其他基于β-内酰胺的抗菌药物之间的交叉耐药性是由 MBL 引起的。在头孢他啶/阿维巴坦和氟喹诺酮类、氨基糖苷类或粘菌素之间未观察到基于机制的交叉耐药性。在多药耐药肠杆菌科和铜绿假单胞菌中观察到对头孢他啶/阿维巴坦的低水平普遍共耐药性。例如,在 2821 株多药耐药肺炎克雷伯菌中,有 3.4%对头孢他啶/阿维巴坦耐药,而 8177 株非多药耐药分离株中只有 0.07%耐药。其中大部分是由 MBL 引起的。在美国的 1151 株多药耐药、广泛耐药和泛耐药铜绿假单胞菌中,有 11.1%对头孢他啶/阿维巴坦耐药,而在 7452 株未选择的分离株中,只有 3.0%耐药。在这种情况下,敏感比例下降不是由于 MBL 引起的。