School of Medicine, New Vision University, Tbilisi, Georgia.
Biophys J. 2023 Mar 7;122(5):892-904. doi: 10.1016/j.bpj.2023.01.028. Epub 2023 Jan 26.
The Young-Laplace, Kelvin, and Gibbs-Thomson equations form a cornerstone of colloidal and surface sciences and have found successful applications in many subfields of physics, chemistry, and biology. The Gibbs-Thomson effect, for example, predicts that small crystals are in equilibrium with their liquid melt at a lower temperature than large crystals and the positive interfacial energy increases the energy required to form small particles with a high curvature interface. In cases of liquids contained within porous media (confined geometry), the effect indicates decreasing the freezing/melting temperatures and the increment of the temperature is inversely proportional to the pore size. These phenomena can be reformulated for Gaussian maps of macromolecules and can be asked the following question: can one use the equations for predicting the melting temperature and shape of polymer chains in confined geometries? The answer is no, mainly because macromolecules form highly curved surfaces (Gaussian maps), and the equations hold only for simple geometries (sphere, plane, or cylinder). Here, we present general Young-Laplace, Kelvin, and Gibbs-Thomson equations for arbitrarily curved surfaces and apply them to predict temperature distribution on a few protein surfaces. Also, after increased interest toward liquid/liquid phase separation in biology, we derive generic Ostwald ripening and show that for shape-changing condensates, instead of a monotonic growing mechanism, a variety of processes are possible. Due to the generality of equations, we clarify that at appropriate internal/external pressure conditions systems, bounded by surfaces, may adopt any shape and thermal stability is strongly influenced by the geometries of confined spaces.
杨-拉普拉斯方程、开尔文方程和吉布斯-汤姆逊方程构成胶体和表面科学的基石,并在物理学、化学和生物学的许多分支中得到了成功的应用。例如,吉布斯-汤姆逊效应预测,小晶体与它们的液体熔体处于平衡状态的温度低于大晶体,而正的界面能增加了形成具有高曲率界面的小颗粒所需的能量。在包含多孔介质(受限几何形状)的液体的情况下,该效应表明降低了冻结/熔化温度,并且温度的增加与孔径成反比。这些现象可以重新表述为大分子的高斯映射,并可以提出以下问题:能否使用这些方程来预测受限几何形状中聚合物链的熔化温度和形状?答案是否定的,主要是因为大分子形成高度弯曲的表面(高斯映射),并且这些方程仅适用于简单的几何形状(球体、平面或圆柱体)。在这里,我们提出了任意弯曲表面的通用杨-拉普拉斯方程、开尔文方程和吉布斯-汤姆逊方程,并将其应用于预测几个蛋白质表面的温度分布。此外,在生物学中对液/液相分离的兴趣增加之后,我们推导出了通用的奥斯特瓦尔德成熟理论,并表明对于形状变化的凝聚物,除了单调增长机制外,还可能存在多种过程。由于方程的通用性,我们澄清了在适当的内部/外部压力条件下,由表面限定的系统可以采用任何形状,并且热稳定性受到受限空间的几何形状的强烈影响。