Sherif Mohamed A, Fotros Aryandokht, Greenberg Benjamin D, McLaughlin Nicole C R
Department of Psychiatry, Brown University, Providence, RI, United States.
Carney Institute for Brain Science, Brown University, Providence, RI, United States.
Front Integr Neurosci. 2023 Jan 10;16:889831. doi: 10.3389/fnint.2022.889831. eCollection 2022.
Cingulotomy is therapeutic in OCD, but what are the possible mechanisms? Computer models that formalize cortical OCD abnormalities and anterior cingulate cortex (ACC) function can help answer this. At the neural dynamics level, cortical dynamics in OCD have been modeled using attractor networks, where activity patterns resistant to change denote the inability to switch to new patterns, which can reflect inflexible thinking patterns or behaviors. From that perspective, cingulotomy might reduce the influence of difficult-to-escape ACC attractor dynamics on other cortical areas. At the functional level, computer formulations based on model-free reinforcement learning (RL) have been used to describe the multitude of phenomena ACC is involved in, such as tracking the timing of expected outcomes and estimating the cost of exerting cognitive control and effort. Different elements of model-free RL models of ACC could be affected by the inflexible cortical dynamics, making it challenging to update their values. An agent can also use a world model, a representation of how the states of the world change, to plan its actions, through model-based RL. OCD has been hypothesized to be driven by reduced certainty of how the brain's world model describes changes. Cingulotomy might improve such uncertainties about the world and one's actions, making it possible to trust the outcomes of these actions more and thus reduce the urge to collect more sensory information in the form of compulsions. Connecting the neural dynamics models with the functional formulations can provide new ways of understanding the role of ACC in OCD, with potential therapeutic insights.
扣带回毁损术对强迫症有治疗作用,但可能的机制是什么?将皮质强迫症异常和前扣带回皮质(ACC)功能形式化的计算机模型有助于回答这个问题。在神经动力学层面,强迫症中的皮质动力学已使用吸引子网络进行建模,其中抵抗变化的活动模式表示无法切换到新模式,这可能反映出僵化的思维模式或行为。从这个角度来看,扣带回毁损术可能会减少难以逃脱的ACC吸引子动力学对其他皮质区域的影响。在功能层面,基于无模型强化学习(RL)的计算机公式已被用于描述ACC所涉及的众多现象,例如跟踪预期结果的时间以及估计施加认知控制和努力的成本。ACC的无模型RL模型中的不同元素可能会受到僵化的皮质动力学影响,使其值难以更新。一个智能体还可以通过基于模型的RL使用世界模型(一种关于世界状态如何变化的表示)来规划其行动。强迫症被假设是由大脑的世界模型描述变化的确定性降低所驱动的。扣带回毁损术可能会改善关于世界和自身行动的这种不确定性,从而更有可能信任这些行动的结果,进而减少以强迫行为形式收集更多感官信息的冲动。将神经动力学模型与功能公式联系起来可以提供新的方式来理解ACC在强迫症中的作用,并具有潜在的治疗见解。