Suppr超能文献

ResidualBind:利用深度神经网络揭示 RNA 结合蛋白的序列-结构偏好。

ResidualBind: Uncovering Sequence-Structure Preferences of RNA-Binding Proteins with Deep Neural Networks.

机构信息

Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Department of Biostatistics, Harvard University, Cambridge, MA, USA.

出版信息

Methods Mol Biol. 2023;2586:197-215. doi: 10.1007/978-1-0716-2768-6_12.

Abstract

Deep neural networks have demonstrated improved performance at predicting sequence specificities of DNA- and RNA-binding proteins. However, it remains unclear why they perform better than previous methods that rely on k-mers and position weight matrices. Here, we highlight a recent deep learning-based software package, called ResidualBind, that analyzes RNA-protein interactions using only RNA sequence as an input feature and performs global importance analysis for model interpretability. We discuss practical considerations for model interpretability to uncover learned sequence motifs and their secondary structure preferences.

摘要

深度神经网络在预测 DNA 和 RNA 结合蛋白的序列特异性方面表现出了改进的性能。然而,目前尚不清楚为什么它们的表现优于以前依赖于 k-mer 和位置权重矩阵的方法。在这里,我们重点介绍一个最近基于深度学习的软件包,称为 ResidualBind,它仅使用 RNA 序列作为输入特征来分析 RNA-蛋白质相互作用,并执行全局重要性分析以实现模型的可解释性。我们讨论了模型可解释性的实际考虑因素,以揭示学习到的序列基序及其二级结构偏好。

相似文献

1
ResidualBind: Uncovering Sequence-Structure Preferences of RNA-Binding Proteins with Deep Neural Networks.
Methods Mol Biol. 2023;2586:197-215. doi: 10.1007/978-1-0716-2768-6_12.
2
Global importance analysis: An interpretability method to quantify importance of genomic features in deep neural networks.
PLoS Comput Biol. 2021 May 13;17(5):e1008925. doi: 10.1371/journal.pcbi.1008925. eCollection 2021 May.
4
Deep neural networks for interpreting RNA-binding protein target preferences.
Genome Res. 2020 Feb;30(2):214-226. doi: 10.1101/gr.247494.118. Epub 2020 Jan 28.
5
SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.
Nucleic Acids Res. 2018 Jul 2;46(W1):W221-W228. doi: 10.1093/nar/gky453.
6
Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins.
Nat Biotechnol. 2009 Jul;27(7):667-70. doi: 10.1038/nbt.1550. Epub 2009 Jun 28.
7
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat Biotechnol. 2015 Aug;33(8):831-8. doi: 10.1038/nbt.3300. Epub 2015 Jul 27.
8
A survey on deep learning in DNA/RNA motif mining.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa229.
9
Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
Bioinformatics. 2018 Oct 15;34(20):3427-3436. doi: 10.1093/bioinformatics/bty364.

引用本文的文献

本文引用的文献

1
Improving representations of genomic sequence motifs in convolutional networks with exponential activations.
Nat Mach Intell. 2021 Mar;3(3):258-266. doi: 10.1038/s42256-020-00291-x. Epub 2021 Feb 8.
2
Deep learning for inferring transcription factor binding sites.
Curr Opin Syst Biol. 2020 Feb;19:16-23. doi: 10.1016/j.coisb.2020.04.001. Epub 2020 Jun 11.
3
DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning.
Nucleic Acids Res. 2020 Jul 27;48(13):7099-7118. doi: 10.1093/nar/gkaa530.
4
Deep neural networks for interpreting RNA-binding protein target preferences.
Genome Res. 2020 Feb;30(2):214-226. doi: 10.1101/gr.247494.118. Epub 2020 Jan 28.
5
Representation learning of genomic sequence motifs with convolutional neural networks.
PLoS Comput Biol. 2019 Dec 19;15(12):e1007560. doi: 10.1371/journal.pcbi.1007560. eCollection 2019 Dec.
6
Logomaker: beautiful sequence logos in Python.
Bioinformatics. 2020 Apr 1;36(7):2272-2274. doi: 10.1093/bioinformatics/btz921.
7
Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
PLoS Comput Biol. 2019 Sep 4;15(9):e1007283. doi: 10.1371/journal.pcbi.1007283. eCollection 2019 Sep.
8
Deep learning: new computational modelling techniques for genomics.
Nat Rev Genet. 2019 Jul;20(7):389-403. doi: 10.1038/s41576-019-0122-6.
9
A deep neural network approach for learning intrinsic protein-RNA binding preferences.
Bioinformatics. 2018 Sep 1;34(17):i638-i646. doi: 10.1093/bioinformatics/bty600.
10
Advances and challenges in the detection of transcriptome-wide protein-RNA interactions.
Wiley Interdiscip Rev RNA. 2018 Jan;9(1). doi: 10.1002/wrna.1436. Epub 2017 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验