State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
Sci Adv. 2023 Jan 27;9(4):eade2217. doi: 10.1126/sciadv.ade2217.
A solid-state zinc-ion battery can fundamentally eliminate dendrite formation and hydrogen evolution on the zinc anode from aqueous systems. However, enabling fast zinc ion conduction in solid crystals is thought to be impossible. Here, we demonstrated a fluorine-doping approach to achieving fast Zn transport in mesoporous ZnSF. The substitutional doping of fluoride ion with sulfide substantially reduces Zn migration barrier in a crystalline phase, while mesopore channels with bounded dimethylformamide enable nondestructive Zn conduction along inner pore surface. This mesoporous conductor features a high room-temperature Zn conductivity (0.66 millisiemens per centimeter, compared with 0.01 to 1 millisiemens per centimeter for lithium solid-state electrolyte) with a superior cycling performance (89.5% capacity retention over 5000 cycles) in a solid zinc-ion battery and energy density (0.04 watt-hour per cubic centimeter) in a solid zinc-ion capacitor. The universality of this crystal engineering approach was also verified in other mesoporous zinc chalcogenide materials, which implies various types of potential Zn-conducting solid electrolytes.
固态锌离子电池可以从根本上消除水系锌阳极上的枝晶形成和析氢。然而,在固态晶体中实现快速的锌离子传导被认为是不可能的。在这里,我们展示了一种氟掺杂方法,在介孔 ZnSF 中实现快速的 Zn 传输。氟离子取代硫化物可以大大降低晶体相中 Zn 的迁移势垒,而具有限域二甲基甲酰胺的介孔通道则可以实现 Zn 在内部孔表面的无损传导。这种介孔导体具有高的室温 Zn 电导率(0.66 毫西门子每厘米,相比之下,锂固态电解质为 0.01 到 1 毫西门子每厘米),在固态锌离子电池中具有优异的循环性能(5000 次循环后容量保持率为 89.5%),在固态锌离子电容器中具有高的能量密度(0.04 瓦时每立方厘米)。这种晶体工程方法的通用性也在其他介孔锌硫属化合物材料中得到了验证,这意味着有多种潜在的 Zn 导电固体电解质。