NanoLund and Solid State Physics, Lund University, S-22100, Lund, Sweden.
Institute for Theoretical Physics I, University of Stuttgart, D-70550, Stuttgart, Germany.
Nat Commun. 2023 Jan 27;14(1):447. doi: 10.1038/s41467-023-36020-2.
The fundamental energy cost of irreversible computing is given by the Landauer bound of [Formula: see text]/bit, where k is the Boltzmann constant and T is the temperature in Kelvin. However, this limit is only achievable for infinite-time processes. We here determine the fundamental energy cost of finite-time parallelizable computing within the framework of nonequilibrium thermodynamics. We apply these results to quantify the energetic advantage of parallel computing over serial computing. We find that the energy cost per operation of a parallel computer can be kept close to the Landauer limit even for large problem sizes, whereas that of a serial computer fundamentally diverges. We analyze, in particular, the effects of different degrees of parallelization and amounts of overhead, as well as the influence of non-ideal electronic hardware. We further discuss their implications in the context of current technology. Our findings provide a physical basis for the design of energy-efficient computers.
不可逆计算的基本能量成本由 [公式:见文本]/位的 Landau 界限给出,其中 k 是玻尔兹曼常数,T 是开尔文温度。然而,这个限制仅在无限时间过程中才是可实现的。我们在这里在非平衡热力学的框架内确定有限时间可并行化计算的基本能量成本。我们应用这些结果来量化并行计算相对于串行计算的能量优势。我们发现,即使对于较大的问题规模,并行计算机的每一次操作的能量成本也可以接近 Landau 极限,而串行计算机的能量成本则从根本上发散。我们特别分析了不同程度的并行化和开销的影响,以及非理想电子硬件的影响。我们进一步讨论了它们在当前技术背景下的意义。我们的研究结果为设计节能计算机提供了物理基础。