Suppr超能文献

基于血清傅里叶变换红外光谱结合机器学习算法的绵羊囊型包虫病快速准确筛查

Rapid and accurate screening of cystic echinococcosis in sheep based on serum Fourier-transform infrared spectroscopy combined with machine learning algorithms.

作者信息

Dawuti Wubulitalifu, Dou Jingrui, Zheng Xiangxiang, Lü Xiaoyi, Zhao Hui, Yang Lingfei, Lin Renyong, Lü Guodong

机构信息

School of Public Health, Xinjiang Medical University, Urumqi, China.

State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.

出版信息

J Biophotonics. 2023 May;16(5):e202200320. doi: 10.1002/jbio.202200320. Epub 2023 Feb 7.

Abstract

Cystic echinococcosis (CE) in sheep is a serious zoonotic parasitic disease caused by Echinococcus granulosus sensu stricto (s.s.). Presently, the screening technology for CE in sheep is time-consuming and inaccurate, and novel screening technology is urgently needed. In this work, we combined machine-learning algorithms with Fourier transform infrared (FT-IR) spectroscopy of serum to establish a quick and accurate screening approach for CE in sheep. Serum samples from 77 E. granulosus s.s.-infected sheep to 121 healthy control sheep were measured by FT-IR spectrometer. To optimize the classification accuracy of the serum FI-TR method for the E. granulosus s.s.-infected sheep and healthy control sheep, principal component analysis (PCA), linear discriminant analysis, and support vector machine (SVM) algorithms were used to analyze the data. Among all the bands, 1500-1700 cm band has the best classification effect; its diagnostic sensitivity, specificity, and accuracy of PCA-SVM were 100%, 95.74%, and 96.66%, respectively. The study showed that serum FT-IR spectroscopy combined with machine learning algorithms has great potential for rapid and accurate screening methods for the CE in sheep.

摘要

绵羊囊型包虫病(CE)是由细粒棘球绦虫(Echinococcus granulosus sensu stricto,s.s.)引起的一种严重的人畜共患寄生虫病。目前,绵羊CE的筛查技术耗时且不准确,迫切需要新的筛查技术。在这项工作中,我们将机器学习算法与血清的傅里叶变换红外(FT-IR)光谱相结合,建立了一种快速、准确的绵羊CE筛查方法。用FT-IR光谱仪对77只感染细粒棘球绦虫s.s.的绵羊和121只健康对照绵羊的血清样本进行了检测。为了优化血清FT-IR方法对感染细粒棘球绦虫s.s.的绵羊和健康对照绵羊的分类准确性,采用主成分分析(PCA)、线性判别分析和支持向量机(SVM)算法对数据进行分析。在所有波段中,1500 - 1700 cm波段具有最佳分类效果;其PCA-SVM的诊断敏感性、特异性和准确性分别为100%、95.74%和96.66%。研究表明,血清FT-IR光谱结合机器学习算法在绵羊CE快速、准确的筛查方法方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验