Suppr超能文献

用于碱性水/海水分解的 Co(PO)-MoO 异质结构的界面化学键调制。

Interfacial Chemical Bond Modulation of Co(PO)-MoO Heterostructures for Alkaline Water/Seawater Splitting.

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

出版信息

Inorg Chem. 2023 Feb 13;62(6):2838-2847. doi: 10.1021/acs.inorgchem.2c04181. Epub 2023 Jan 29.

Abstract

The development of a high current density with high energy conversion efficiency electrocatalyst is vital for large-scale industrial application of alkaline water splitting, particularly seawater splitting. Herein, we design a self-supporting Co(PO)-MoO/CoMoO/NF superaerophobic electrode with a three-dimensional structure for high-performance hydrogen evolution reaction (HER) by a reasonable devise of possible "Co-O-Mo hybridization" on the interface. The "Co-O-Mo hybridization" interfaces induce charge transfer and generation of fresh oxygen vacancy active sites. Consequently, the unique heterostructures greatly facilitate the dissociation process of HO molecules and enable efficient hydrogen spillover, leading to excellent HER performance with ultralow overpotentials (76 and 130 mV at 100 and 500 mA cm) and long-term durability of 100 h in an alkaline electrolyte. Theoretical calculations reveal that the Co(PO)-MoO/CoMoO/NF promotes the adsorption/dissociation process of HO molecules to play a crucial role in improving the stability and activity of HER. Our results exhibit that the HER activity of non-noble metal electrocatalysts can be greatly enhanced by rational interfacial chemical bonding to modulate the heterostructures.

摘要

开发具有高电流密度和高能量转换效率的电催化剂对于碱性水分解的大规模工业应用至关重要,特别是海水分解。在此,我们通过在界面上合理设计可能的“Co-O-Mo 杂化”,设计了具有三维结构的自支撑 Co(PO)-MoO/CoMoO/NF 超疏水电极,用于高性能析氢反应 (HER)。“Co-O-Mo 杂化”界面诱导电荷转移和产生新的氧空位活性位。因此,独特的异质结构极大地促进了 HO 分子的解离过程,并实现了高效的氢溢流,从而在碱性电解质中表现出优异的 HER 性能,超低过电位(100 和 500 mA cm 时分别为 76 和 130 mV)和长达 100 h 的长期耐久性。理论计算表明,Co(PO)-MoO/CoMoO/NF 促进了 HO 分子的吸附/解离过程,在提高 HER 的稳定性和活性方面发挥了关键作用。我们的结果表明,通过合理的界面化学键合来调节异质结构,可以大大增强非贵金属电催化剂的 HER 活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验