Suppr超能文献

将等离子体金属嵌入封装半导体空心结构的异质界面中,以提高 CO 光还原性能。

Embedding Plasmonic Metal into Heterointerface of MOFs-Encapsulated Semiconductor Hollow Architecture for Boosting CO Photoreduction.

机构信息

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.

出版信息

Small. 2023 Apr;19(17):e2207705. doi: 10.1002/smll.202207705. Epub 2023 Jan 29.

Abstract

Coupling hollow semiconductor with metal-organic frameworks (MOFs) holds great promise for constructing high-efficient CO photoreduction systems. However, energy band mismatch between them makes it difficult to exert their advantages to maximize the overall photocatalytic efficiency, since that the blockage of desirable interfacial charge transfer gives rise to the enrichment of photoelectrons and CO molecules on the different locations. Herein, an interfacial engineering is presented to overcome this impediment, based on the insertion of plasmonic metal into the heterointerfaces between them, forming a stacked semiconductor/metal@MOF photocatalyst. Experimental observations and theoretical simulations validate the critical roles of embedded Au in maneuvering the charge separation/transfer and surface reaction: (i) bridges the photoelectron transfer from hollow CdS (H-CdS) to ZIF-8; (ii) produces hot electrons and shifts them to ZIF-8; (iii) induces the formation of ZIF-8 defects in promoting the CO adsorption/activation and transformation to CO with low energy barriers. Consequently, the as-prepared H-CdS/Au@ZIF-8 with optimal ZIF-8 thickness exhibits distinctly boosted activity and superb selectivity in CO production as compared with H-CdS@ZIF-8 and other counterparts. This work provides protocols to take full advantages of components involved for enhanced solar-to-chemical energy conversion efficiency of hybrid artificial photosynthetic systems through rationally harnessing the charge transfer between them.

摘要

将中空半导体与金属有机骨架(MOFs)耦合在一起,为构建高效 CO 光还原系统提供了很大的前景。然而,它们之间的能带失配使得难以发挥它们的优势,从而最大化整体光催化效率,因为不同位置上的光电子和 CO 分子的理想界面电荷转移受阻会导致其富集。在此,提出了一种界面工程,通过在它们之间的异质界面插入等离子体金属,形成堆叠半导体/金属@MOF 光催化剂,从而克服了这一障碍。实验观察和理论模拟验证了嵌入的 Au 在操纵电荷分离/转移和表面反应方面的关键作用:(i) 桥接从中空 CdS (H-CdS) 到 ZIF-8 的光电子转移;(ii) 产生热电子并将其转移到 ZIF-8;(iii) 通过促进 ZIF-8 缺陷的形成来诱导 CO 的吸附/活化和转化,从而降低能量势垒。因此,与 H-CdS@ZIF-8 和其他对照物相比,具有最佳 ZIF-8 厚度的制备的 H-CdS/Au@ZIF-8 在 CO 生产中表现出明显增强的活性和优异的选择性。这项工作通过合理利用它们之间的电荷转移,为充分利用混合人工光合作用系统中涉及的组件以提高太阳能到化学能的转换效率提供了方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验