Ozdemir Neslihan, Secer Aydin, Ozisik Muslum, Bayram Mustafa
Istanbul Gelisim University, Department of Software Engineering, Istanbul, Turkey.
Biruni University, Department of Computer Engineering, Istanbul, Turkey.
Heliyon. 2023 Jan 20;9(1):e13015. doi: 10.1016/j.heliyon.2023.e13015. eCollection 2023 Jan.
In this research paper, the generalized projective Riccati equations method (GPREM) is applied successfully to procure the soliton solutions of the local M-fractional longitudinal wave equation (LWE) arising in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic circular rod (MEECR). Applying a wave transformation to the local M-fractional LWE, the equation can be turned into a set of algebraic equations. Solving the algebraic equation system, we procure the soliton solutions of the local M-fractional LWE. Both the obtained solution functions in the study and the graphical simulations depicted for these functions. It will assist researchers working in this field in the physical interpretation of this equation. Moreover, the reported solutions propose a rich platform to examine the local M-fractional LWE.
在本研究论文中,广义射影里卡蒂方程方法(GPREM)被成功应用于求解磁电弹性圆杆(MEECR)中由横向泊松效应引起色散的数学物理中的局部M分数阶纵向波动方程(LWE)的孤子解。对局部M分数阶LWE应用波变换,该方程可转化为一组代数方程。通过求解代数方程组,我们获得了局部M分数阶LWE的孤子解。研究中得到的解函数以及针对这些函数所描绘的图形模拟。这将有助于该领域的研究人员对方程进行物理解释。此外,所报道的解为研究局部M分数阶LWE提供了一个丰富的平台。