Durán-Olivencia F J, Gannoun R, Pérez A T, Valverde J M
Dpto. de Ingeniería, Universidad Loyola Andalucía, Avda. de Las Universidades s/n, 41704, Seville, Spain.
Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012Seville, Spain.
Ind Eng Chem Res. 2023 Jan 17;62(3):1373-1389. doi: 10.1021/acs.iecr.2c03490. eCollection 2023 Jan 25.
Nanosilica coatings are considered a simple physical treatment to alleviate the effect of cohesion on powder flowability. In limestone powders, these coatings buffer the rise in cohesion at high temperatures. Here, we investigate the role of particle size in the efficiency (and resilience) of these layers. To this end, this work examines a series of four limestone powders with very sharp particle size distributions: average particle size ranged from 15 to 60 μm. All the samples were treated with nanosilica at different concentrations from 0 to 0.82 wt %. Powders were subjected to short- and long-term storage conditions in calcium looping based systems: temperatures that vary from 25 to 500 °C and moderate consolidations (up to 2 kPa). Experiments monitored powder cohesion and its ability to flow by tracking the tensile strength of different samples while fluidized freely. Fluidization profiles were also used to infer variation in packings and the internal friction of the powder bed. Interestingly, for particle sizes below 50 μm, the nanosilica treatment mitigated cohesion significantly-the more nanosilica content, the better the flowability performance. However, at high temperatures, the efficiency of nanosilica coatings declined in 60 μm samples. Scanning electron microscopy images confirmed that only 60 μm samples presented surfaces barely coated after the experiments. In conclusion, nanosilica coatings on limestone are not stable beyond the 50 μm threshold. This is a critical finding for thermochemical systems based on the calcium looping process, since larger particles can still exhibit a significant degree of cohesion at high temperatures.
纳米二氧化硅涂层被认为是一种简单的物理处理方法,用于减轻内聚力对粉末流动性的影响。在石灰石粉末中,这些涂层可缓冲高温下内聚力的增加。在此,我们研究了粒径在这些涂层的效率(和弹性)方面所起的作用。为此,本研究考察了一系列四种粒径分布非常窄的石灰石粉末:平均粒径范围为15至60μm。所有样品均用浓度从0至0.82 wt%的纳米二氧化硅进行处理。粉末在基于钙循环的系统中经历短期和长期储存条件:温度范围为25至500°C,固结程度适中(高达2 kPa)。实验通过跟踪不同样品在自由流化时的拉伸强度来监测粉末的内聚力及其流动能力。流化曲线还用于推断堆积变化和粉末床的内摩擦力。有趣的是,对于粒径小于50μm的情况,纳米二氧化硅处理显著减轻了内聚力——纳米二氧化硅含量越高,流动性能越好。然而,在高温下,60μm样品中纳米二氧化硅涂层的效率下降。扫描电子显微镜图像证实,实验后只有60μm的样品表面几乎没有被包覆。总之,石灰石上的纳米二氧化硅涂层在超过50μm的阈值后不稳定。这对于基于钙循环过程的热化学系统来说是一个关键发现,因为较大的颗粒在高温下仍可能表现出显著程度的内聚力。