School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, UK.
Sci Rep. 2023 Jan 31;13(1):1804. doi: 10.1038/s41598-023-29030-z.
To achieve a sustainable human presence on the Moon, it is critical to develop technologies utilising the local resources (a.k.a. in-situ resource utilisation or ISRU) for construction and resource extraction. In this study, we investigate the viability of microwave heating of two lunar soil simulants (JSC-1A and OPRH3N) under vacuum conditions, to simulate a lunar surface environment compared to previous studies performed at atmospheric pressure. All simulants are thermally treated in a bespoke 2.45 GHz microwave apparatus using three input powers: 1000 W, 600 W and 250 W. The microstructures and mechanical properties of the microwaved samples are analysed to identify their potential applications. Our key findings are: (i) higher input powers generate materials in shorter fabrication times with higher mechanical strengths and higher yields despite the same total energy input; (ii) the microstructures of the microwaved samples under vacuum are very different from those under atmospheric conditions due to the widespread vesicles/bubbles; and (iii) different heating rates caused by different input powers can be utilised for specific ISRU purposes: higher input powers for extra-terrestrial construction and lower input powers for resource extraction. Findings from this study have significant implications for developing a microwave-heating payload for lunar ISRU demonstration missions.
为了实现人类在月球上的可持续存在,开发利用月球资源(即就地资源利用或 ISRU)进行建设和资源提取的技术至关重要。在这项研究中,我们研究了在真空条件下对两种月球土壤模拟物(JSC-1A 和 OPRH3N)进行微波加热的可行性,与之前在大气压下进行的研究相比,模拟了月球表面环境。所有模拟物均在定制的 2.45GHz 微波设备中使用三种输入功率(1000W、600W 和 250W)进行热处理。分析了微波处理样品的微观结构和力学性能,以确定其潜在的应用。我们的主要发现是:(i) 尽管输入的总能量相同,但较高的输入功率可在更短的制造时间内生成具有更高机械强度和更高产率的材料;(ii) 由于广泛存在的气泡/气泡,真空条件下微波处理样品的微观结构与大气条件下的微观结构非常不同;(iii) 不同的输入功率导致不同的加热速率,可用于特定的 ISRU 目的:更高的输入功率用于外星建筑,更低的输入功率用于资源提取。这项研究的结果对开发用于月球 ISRU 演示任务的微波加热有效载荷具有重要意义。