Mansour Iymad R, Thomson Rowan M
Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, Ontario, Canada.
Phys Med Biol. 2023 Mar 21;68(7). doi: 10.1088/1361-6560/acb885.
To investigate an approach for quantitative characterization of the spatial distribution of dosimetric data by introducing Haralick texture feature analysis in this context.Monte Carlo simulations are used to generate 3D arrays of dosimetric data for 2 scenarios: (1) cell-scale microdosimetry: specific energy (energy imparted per unit mass) in cell-scale targets irradiated by photon spectra (I,Ir, 6 MV); (2) tumour-scale dosimetry: absorbed dose in voxels for idealized models ofI permanent implant prostate brachytherapy, considering 'TG186' (realistic tissues including 0% to 5% intraprostatic calcifications; interseed attenuation) and 'TG43' (water model, no interseed attenuation) conditions. Five prominent Haralick features (homogeneity, contrast, correlation, local homogeneity, entropy) are computed and trends are interpreted using fundamental radiation physics.In the cell-scale scenario, the Haralick measures quantify differences in 3D specific energy distributions due to source spectra. For example, contrast and entropy are highest forI reflecting the large variations in specific energy in adjacent voxels (photoelectric interactions; relatively short range of electrons), while 6 MV has the highest homogeneity with smaller variations in specific energy between voxels (Compton scattering dominates; longer range of electrons). For the tumour-scale scenario, the Haralick measures quantify differences due to TG186/TG43 simulation conditions and the presence of calcifications. For example, as calcifications increase from 0% to 5%, contrast increases while correlation decreases, reflecting the large differences in absorbed dose in adjacent voxels (higher absorbed dose in voxels with calcification due to photoelectric interactions).Haralick texture analysis provides a quantitative method for the characterization of 3D dosimetric distributions across cellular to tumour length scales, with promising future applications including analyses of multiscale tissue models, patient-specific data, and comparison of treatment approaches.
在这种情况下,通过引入哈勒克纹理特征分析来研究一种对剂量学数据空间分布进行定量表征的方法。蒙特卡罗模拟用于生成两种场景下的剂量学数据三维阵列:(1)细胞尺度微剂量学:光子光谱(I、Ir、6 MV)照射细胞尺度靶标时的比能(单位质量吸收的能量);(2)肿瘤尺度剂量学:针对I永久性植入前列腺近距离治疗的理想化模型,考虑“TG186”(包括0%至5%前列腺内钙化的真实组织;籽源间衰减)和“TG43”(水模型,无籽源间衰减)条件下体素中的吸收剂量。计算五个突出的哈勒克特征(均匀性、对比度、相关性、局部均匀性、熵),并使用基础辐射物理学解释其趋势。在细胞尺度场景中,哈勒克测量量化了由于源光谱导致的三维比能分布差异。例如,I的对比度和熵最高,反映了相邻体素中比能的巨大变化(光电相互作用;电子射程相对较短),而6 MV具有最高的均匀性,体素间比能变化较小(康普顿散射占主导;电子射程较长)。对于肿瘤尺度场景,哈勒克测量量化了由于TG186/TG43模拟条件和钙化的存在而产生的差异。例如,随着钙化从0%增加到5%,对比度增加而相关性降低,反映了相邻体素中吸收剂量的巨大差异(由于光电相互作用,有钙化的体素中吸收剂量更高)。哈勒克纹理分析为跨细胞到肿瘤长度尺度的三维剂量学分布表征提供了一种定量方法,其未来应用前景广阔,包括多尺度组织模型分析、患者特异性数据以及治疗方法比较。