Suppr超能文献

利用生物传感器XylS和机器学习工程改造甲苯降解酶XylM的底物特异性

Engineering the Substrate Specificity of Toluene Degrading Enzyme XylM Using Biosensor XylS and Machine Learning.

作者信息

Ogawa Yuki, Saito Yutaka, Yamaguchi Hideki, Katsuyama Yohei, Ohnishi Yasuo

机构信息

Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo113-8657, Japan.

Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan.

出版信息

ACS Synth Biol. 2023 Feb 17;12(2):572-582. doi: 10.1021/acssynbio.2c00577. Epub 2023 Feb 3.

Abstract

Enzyme engineering using machine learning has been developed in recent years. However, to obtain a large amount of data on enzyme activities for training data, it is necessary to develop a high-throughput and accurate method for evaluating enzyme activities. Here, we examined whether a biosensor-based enzyme engineering method can be applied to machine learning. As a model experiment, we aimed to modify the substrate specificity of XylM a rate-determining enzyme in a multistep oxidation reaction catalyzed by XylMABC in . XylMABC naturally converts toluene and xylene to benzoic acid and toluic acid, respectively. We aimed to engineer XylM to improve its conversion efficiency to a non-native substrate, 2,6-xylenol. Wild-type XylMABC slightly converted 2,6-xylenol to 3-methylsalicylic acid, which is the ligand of the transcriptional regulator XylS in . By locating a fluorescent protein gene under the control of the promoter to which XylS binds, a XylS-producing strain showed higher fluorescence intensity in a 3-methylsalicylic acid concentration-dependent manner. We evaluated the 3-methylsalicylic acid productivity of XylM variants using the fluorescence intensity of the sensor strain as an indicator. The obtained data provided the training data for machine learning for the directed evolution of XylM. Two cycles of machine learning-assisted directed evolution resulted in the acquisition of XylM-D140E-V144K-F243L-N244S with 15 times higher productivity than wild-type XylM. These results demonstrate that an indirect enzyme activity evaluation method using biosensors is sufficiently quantitative and high-throughput to be used as training data for machine learning. The findings expand the versatility of machine learning in enzyme engineering.

摘要

近年来,利用机器学习的酶工程技术得到了发展。然而,为了获得大量关于酶活性的数据作为训练数据,有必要开发一种高通量且准确的酶活性评估方法。在此,我们研究了基于生物传感器的酶工程方法是否可应用于机器学习。作为一个模型实验,我们旨在改变木糖氧化酶(XylM)的底物特异性,XylM是木糖氧化酶ABC(XylMABC)催化的多步氧化反应中的限速酶。XylMABC能自然地将甲苯和二甲苯分别转化为苯甲酸和甲基苯甲酸。我们旨在对XylM进行工程改造,以提高其对非天然底物2,6 - 二甲苯酚的转化效率。野生型XylMABC能将2,6 - 二甲苯酚轻微转化为3 - 甲基水杨酸,3 - 甲基水杨酸是转录调节因子XylS在[具体物种]中的配体。通过将荧光蛋白基因定位在XylS结合的启动子控制下,产生XylS的[具体物种]菌株在3 - 甲基水杨酸浓度依赖性方式下表现出更高的荧光强度。我们以传感器菌株的荧光强度为指标评估了XylM变体的3 - 甲基水杨酸生产能力。所获得的数据为XylM的定向进化提供了机器学习的训练数据。经过两个周期的机器学习辅助定向进化,获得了XylM - D140E - V144K - F243L - N244S,其生产能力比野生型XylM高15倍。这些结果表明,使用生物传感器的间接酶活性评估方法具有足够的定量性和高通量性,可作为机器学习的训练数据。这些发现扩展了机器学习在酶工程中的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验