Suppr超能文献

针对一种对全球健康构成威胁的病原体的蛋白质治疗靶点候选物:基于网络的综合组学药物发现方法。

Protein Therapeutic Target Candidates Against , a Pathogen of Concern to Planetary Health: A Network-Based Integrative Omics Drug Discovery Approach.

作者信息

Swain Aishwarya, Pan Archana

机构信息

Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India.

出版信息

OMICS. 2023 Feb;27(2):62-74. doi: 10.1089/omi.2022.0180. Epub 2023 Feb 3.

Abstract

, an opportunistic gram-negative pathogen responsible for several nosocomial infections, has developed resistance to various antibiotics. Proteins involved in the two-component system (TCS), virulence, and antibiotic resistance (AR), help this pathogen in regulating antibiotic susceptibility and virulence mechanisms. The present study reports a network-based integrative omics approach to drug discovery to identify key regulatory proteins as therapeutic candidates against . We collected data on the TCS, virulence, and AR proteins from various databases (P2CS, VFDB, ARDB, and PAIDB), which were subjected to network, host-pathogen, and gene expression data analysis. Network analysis identified 43 hubs, and 10 proteins were found to be interacting with human proteins associated with vital pathways. Of the 53 (43 + 10) pathogen proteins, 46 had no orthologs in the human host. Twelve proteins, namely, RpfC, Wzc, OmpR, EnvZ, BfmS, PilG, histidine kinase, ABC 3 transport family protein, outer membrane porin OprD family, CsuD, Pgm, and LpxA, were differentially expressed in the resistant strain. We propose these proteins as key regulators that warrant evaluation as therapeutic target candidates in the future. Furthermore, structure prediction of ABC 3 transport family protein was performed as a case study. The findings from this study are poised to facilitate and inform drug discovery and development against

摘要

作为一种导致多种医院感染的机会性革兰氏阴性病原体,已对多种抗生素产生耐药性。参与双组分系统(TCS)、毒力和抗生素耐药性(AR)的蛋白质有助于这种病原体调节抗生素敏感性和毒力机制。本研究报告了一种基于网络的综合组学方法用于药物发现,以确定关键调节蛋白作为针对……的治疗候选物。我们从各种数据库(P2CS、VFDB、ARDB和PAIDB)收集了关于TCS、毒力和AR蛋白的数据,并对其进行网络、宿主 - 病原体和基因表达数据分析。网络分析确定了43个枢纽蛋白,发现有10种蛋白质与参与重要途径的人类蛋白质相互作用。在这53种(43 + 10)病原体蛋白中,有46种在人类宿主中没有直系同源物。12种蛋白质,即RpfC、Wzc、OmpR、EnvZ、BfmS、PilG、组氨酸激酶、ABC 3转运家族蛋白、外膜孔蛋白OprD家族、CsuD、磷酸葡萄糖变位酶(Pgm)和脂多糖生物合成蛋白A(LpxA),在耐药菌株中差异表达。我们提出这些蛋白质作为关键调节因子,值得在未来作为治疗靶点候选物进行评估。此外,作为案例研究对ABC 3转运家族蛋白进行了结构预测。本研究的结果有望促进并为针对……的药物发现和开发提供信息

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验