Physics Department, University of Malaya, Jln Professor Aziz, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur Malaysia.
Physics Department, Amirkabir University of Technology, Tehran, 15875-4413 Iran.
Sci Rep. 2023 Feb 3;13(1):1979. doi: 10.1038/s41598-023-29143-5.
Unified jet-DBD design, [Formula: see text], proposed in this work presents large-scale plasma in an unbounded region of atmospheric air, without any need for the flow of gas, offering efficient exposure to sizable and complex objects. This is a simulation-based architecture for stable non-thermal plasma source with notable experimental results. [Formula: see text] geometry optimizes the electric field and charge distribution for a diffuse discharge in the steady air by a key design parameter of [Formula: see text]. Teflon insulator with a thickness [Formula: see text] imposes an intense and uniform electric field shaped up at the open area in front of the device and generates radially/axially expanded plasma jet. In the [Formula: see text], phase shift increases by [Formula: see text] and the plasma generates more power than the classical plasma jet. Two distinct states of [Formula: see text] operation indicate the mode-swap at [Formula: see text] and power dissipation. In the reactive [Formula: see text] scheme even small changes in the phase angle effectively improves the electric power.
本文提出了一种统一的射流放电-DBD 设计,[公式:见正文],在大气环境中提供无边界的大规模等离子体,无需气体流动,可高效处理大尺寸和复杂物体。这是一种基于模拟的架构,用于稳定的非热等离子体源,并取得了显著的实验结果。[公式:见正文]几何形状通过关键设计参数[公式:见正文]优化了稳定空气中弥散放电的电场和电荷分布。特氟龙绝缘体厚度为[公式:见正文],在装置前方的开阔区域形成强烈且均匀的电场,并产生径向/轴向扩展的等离子体射流。在[公式:见正文]中,相移增加了[公式:见正文],等离子体产生的功率比传统的等离子体射流更大。[公式:见正文]的两种不同工作状态表明在[公式:见正文]处发生了模式转换和功率耗散。在反应性[公式:见正文]方案中,即使相角的微小变化也能有效地提高电功率。