Laboratoire de Géologie de Lyon (LGL-TPE), ENS Lyon, CNRS and Université Claude Bernard de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 7, France.
CEA, DAM, DIF, F-91297, Arpajon, France.
J Environ Radioact. 2023 May;261:107125. doi: 10.1016/j.jenvrad.2023.107125. Epub 2023 Feb 3.
The measurement of radioactive xenon isotopes (radioxenon) in the atmosphere is a tool used to detect underground nuclear explosions, provided that some radioxenon escaped containment and that fractionation leading to the alteration of the relative proportions of these isotopes, is accounted for. After the explosion, volatilization followed by melting of the surrounding rocks produces a magma where the more refractory radioactive species get dissolved while the more volatile ones contribute to the gas phase that might escape. Indium, tin, antimony, tellurium and iodine are the main fission products involved in the decay chains leading to radioxenon. In this study, condensation as a function of temperature for these precursors of radioxenon were determined using thermodynamic calculations for systems with complex chemical composition corresponding to major environments of known underground nuclear explosions and for a range of pressure values representative of the cavity evolution. Our results illustrate a large difference between the relevant condensation temperatures for the radioxenon precursors and the tabulated boiling temperatures of the pure compounds often used as indicators of their volatility. For some precursory elements such as tin, the often-considered Heaviside function represents an oversimplification of the concept of condensation temperature, as condensation occurs over a temperature range as large as 2000 K. This results from the speciation of the elements in the gas phase mainly driven by the formation of oxides. Condensation also strongly depends on pressure while it moderately depends on the bulk chemical composition of the system. This study shows the importance and complexity of the condensation process following underground nuclear explosions. It also shows how thermodynamic computations allow the prediction of the quantity and the relative proportions of radioactive xenon isotopes in the gas phase in the presence of magma, before their potential emission to the atmosphere. Better detection, discrimination and understanding of underground nuclear explosions should arise by taking into account the fractionation resulting from the condensation of the radionuclides producing radioxenon in nuclear cavities.
测量大气中的放射性氙同位素(放射性氙)是一种用于探测地下核爆炸的工具,前提是一些放射性氙逸出了封存设施,并且考虑到导致这些同位素相对比例发生变化的分馏作用。爆炸后,周围岩石的挥发和熔化会产生岩浆,其中更难挥发的放射性物质会溶解,而更易挥发的物质则会进入可能逸出的气相中。铟、锡、锑、碲和碘是参与导致放射性氙的衰变链的主要裂变产物。在这项研究中,使用热力学计算确定了这些放射性氙前体在与已知地下核爆炸主要环境对应的复杂化学成分体系中和代表空腔演化的一系列压力值下随温度的冷凝情况。我们的结果表明,放射性氙前体的相关冷凝温度与通常用作其挥发性指标的纯化合物的列表沸点之间存在很大差异。对于一些前体元素,如锡,人们经常考虑的海维塞德函数(Heaviside function)是对冷凝温度概念的过度简化,因为冷凝发生在高达 2000 K 的温度范围内。这是由于元素在气相中的形态主要由氧化物的形成所驱动。冷凝还强烈依赖于压力,而对体系的总体化学成分的依赖程度适中。这项研究表明了地下核爆炸后冷凝过程的重要性和复杂性。它还表明,热力学计算如何允许在岩浆存在的情况下预测放射性氙同位素在气相中的数量和相对比例,然后再预测它们向大气的潜在排放。通过考虑产生放射性氙的核空腔中放射性核素冷凝导致的分馏作用,应该可以更好地探测、区分和理解地下核爆炸。