Suppr超能文献

在极端嗜热嗜酸古菌的热应激反应中,转录调控因子与 VapBC 毒素-抗毒素基因座之间的相互作用。

Interplay between transcriptional regulators and VapBC toxin-antitoxin loci during thermal stress response in extremely thermoacidophilic archaea.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.

Beadle Center for Genetics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.

出版信息

Environ Microbiol. 2023 Jun;25(6):1200-1215. doi: 10.1111/1462-2920.16350. Epub 2023 Feb 24.

Abstract

Thermoacidophilic archaea lack sigma factors and the large inventory of heat shock proteins (HSPs) widespread in bacterial genomes, suggesting other strategies for handling thermal stress are involved. Heat shock transcriptomes for the thermoacidophilic archaeon Saccharolobus (f. Sulfolobus) solfataricus 98/2 revealed genes that were highly responsive to thermal stress, including transcriptional regulators YtrA (Ssol_2420) and FadR (Ssol_0314), as well as type II toxin-antitoxin (TA) loci VapBC6 (Ssol_2337, Ssol_2338) and VapBC22 (Ssol_0819, Ssol_0818). The role, if any, of type II TA loci during stress response in microorganisms, such as Escherichia coli, is controversial. But, when genes encoding YtrA , FadR , VapC22, VapB6, and VapC6 were systematically mutated in Sa. solfataricus 98/2, significant up-regulation of the other genes within this set was observed, implicating an interconnected regulatory network during thermal stress response. VapBC6 and VapBC22 have close homologues in other Sulfolobales, as well as in other archaea (e.g. Pyrococcus furiosus and Archaeoglobus fulgidus), and their corresponding genes were also heat shock responsive. The interplay between VapBC TA loci and heat shock regulators in Sa solfataricus 98/2 not only indicates a cellular mechanism for heat shock response that differs from bacteria but one that could have common features within the thermophilic archaea.

摘要

嗜热嗜酸古菌缺乏 sigma 因子和广泛存在于细菌基因组中的大量热休克蛋白(HSPs),这表明涉及其他处理热应激的策略。嗜热嗜酸古菌(f. Sulfolobus)solfataricus 98/2 的热休克转录组揭示了对热应激高度响应的基因,包括转录调节剂 YtrA(Ssol_2420)和 FadR(Ssol_0314),以及 II 型毒素-抗毒素(TA)基因座 VapBC6(Ssol_2337,Ssol_2338)和 VapBC22(Ssol_0819,Ssol_0818)。在微生物(如大肠杆菌)中,II 型 TA 基因座在应激反应中的作用(如果有的话)存在争议。但是,当 Sa. solfataricus 98/2 中的 YtrA、FadR、VapC22、VapB6 和 VapC6 编码基因被系统突变时,观察到该基因集中的其他基因显著上调,这表明在热应激反应过程中存在相互关联的调控网络。VapBC6 和 VapBC22 在其他 Sulfolobales 以及其他古菌(如 Pyrococcus furiosus 和 Archaeoglobus fulgidus)中具有密切的同源物,它们对应的基因也对热休克有反应。在 Sa solfataricus 98/2 中,VapBC TA 基因座和热休克调节因子之间的相互作用不仅表明了一种与细菌不同的热休克反应的细胞机制,而且在嗜热古菌中可能具有共同的特征。

相似文献

2
Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus.
Biochem Soc Trans. 2009 Feb;37(Pt 1):123-6. doi: 10.1042/BST0370123.
3
VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus.
RNA. 2011 Jul;17(7):1381-92. doi: 10.1261/rna.2679911. Epub 2011 May 27.
5
Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin.
mBio. 2023 Apr 25;14(2):e0005323. doi: 10.1128/mbio.00053-23. Epub 2023 Apr 10.
7
Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs.
Toxins (Basel). 2014 Jan 15;6(1):337-58. doi: 10.3390/toxins6010337.
9
Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.
J Proteomics. 2019 Jan 16;191:143-152. doi: 10.1016/j.jprot.2018.02.024. Epub 2018 Mar 1.
10
Identification and characterization of VapBC toxin-antitoxin system in sp. PAMC 26642 isolated from Arctic lichens.
RNA. 2021 Nov;27(11):1374-1389. doi: 10.1261/rna.078786.121. Epub 2021 Aug 24.

引用本文的文献

1
Membrane lipid and expression responses of REY15A to acid and cold stress.
Front Microbiol. 2023 Aug 15;14:1219779. doi: 10.3389/fmicb.2023.1219779. eCollection 2023.
2
Transcriptome profiling of Nudix hydrolase gene deletions in the thermoacidophilic archaeon .
Front Microbiol. 2023 Jun 15;14:1197877. doi: 10.3389/fmicb.2023.1197877. eCollection 2023.
3
Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin.
mBio. 2023 Apr 25;14(2):e0005323. doi: 10.1128/mbio.00053-23. Epub 2023 Apr 10.

本文引用的文献

1
DNA-Binding Properties of a Novel Crenarchaeal Chromatin-Organizing Protein in .
Biomolecules. 2022 Mar 30;12(4):524. doi: 10.3390/biom12040524.
2
Toxin-Antitoxin Systems as Phage Defense Elements.
Annu Rev Microbiol. 2022 Sep 8;76:21-43. doi: 10.1146/annurev-micro-020722-013730. Epub 2022 Apr 8.
3
Heat shock response in archaea.
Emerg Top Life Sci. 2018 Dec 14;2(4):581-593. doi: 10.1042/ETLS20180024.
4
The biology of thermoacidophilic archaea from the order Sulfolobales.
FEMS Microbiol Rev. 2021 Aug 17;45(4). doi: 10.1093/femsre/fuaa063.
5
Life in hot acid: a genome-based reassessment of the archaeal order Sulfolobales.
Environ Microbiol. 2021 Jul;23(7):3568-3584. doi: 10.1111/1462-2920.15189. Epub 2020 Sep 7.
6
Defining heat shock response for the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius.
Extremophiles. 2020 Sep;24(5):681-692. doi: 10.1007/s00792-020-01184-y. Epub 2020 Jun 19.
7
Stress Can Induce Transcription of Toxin-Antitoxin Systems without Activating Toxin.
Mol Cell. 2020 Jul 16;79(2):280-292.e8. doi: 10.1016/j.molcel.2020.05.028. Epub 2020 Jun 12.
8
Type II Toxin-Antitoxin Systems: Evolution and Revolutions.
J Bacteriol. 2020 Mar 11;202(7). doi: 10.1128/JB.00763-19.
10
YtrA, a GntR-Family Transcription Factor, Represses Two Genetic Loci Encoding Membrane Proteins in .
Front Microbiol. 2019 Sep 10;10:2084. doi: 10.3389/fmicb.2019.02084. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验