Suppr超能文献

一种用于补偿呼吸运动基线漂移的新型外部/内部肿瘤跟踪方法。

A novel external/internal tumor tracking approach to compensate for respiratory motion baseline drifts.

作者信息

Giżyńska Marta K, Seppenwoolde Yvette, Kilby Warren, Heijmen Ben Jm

机构信息

Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.

Accuray Incorporated, Sunnyvale, CA, United States of America.

出版信息

Phys Med Biol. 2023 Mar 6;68(5). doi: 10.1088/1361-6560/acba79.

Abstract

Real-time respiratory tumor tracking as implemented in a robotic treatment unit is based on continuous optical measurement of the position of external markers and a correlation model between them and internal target positions, which are established with X-ray imaging of the tumor, or fiducials placed in or around the tumor. Correlation models are created with fifteen simultaneously measured external/internal marker position pairs divided over the respiratory cycle. Every 45-150 s, the correlation model is updated by replacing the three first acquired data pairs with three new pairs. Tracking simulations for >120.000 computer-generated respiratory tracks demonstrated that this tracking approach resulted in relevant inaccuracies in internal target position predictions, especially in case of presence of respiratory motion baseline drifts.To better cope with drifts, we introduced a novel correlation model with an explicit time dependence, and we proposed to replace the currently applied linear-motion tracking (LMT) by mixed-model tracking (MMT). In MMT, the linear correlation model is extended with an explicit time dependence in case of a detected baseline drift. MMT prediction accuracies were then established for the same >120.000 computer-generated patients as used for LMT.For 150 s update intervals, MMT outperformed LMT in internal target position prediction accuracy for 93.7 ∣ 97.2% of patients with 0.25 ∣ 0.5 mm minlinear respiratory motion baseline drifts with similar numbers of X-ray images and similar treatment times. For the upper 25% of patients, mean 3D internal target position prediction errors reduced by 0.7 ∣ 1.8 mm, while near maximum reductions (upper 10% of patients) were 0.9 ∣ 2.0 mm.For equal numbers of acquired X-ray images, MMT greatly improved tracking accuracy compared to LMT, especially in the presence of baseline drifts. Even with almost 50% less acquired X-ray images, MMT still outperformed LMT in internal target position prediction accuracy.

摘要

机器人治疗单元中实现的实时呼吸肿瘤跟踪基于对外部标记位置的连续光学测量以及它们与内部目标位置之间的相关模型,这些相关模型是通过肿瘤的X射线成像或放置在肿瘤内或周围的基准标记建立的。相关模型是通过在呼吸周期内同时测量的15对外/内标记位置对创建的。每45 - 150秒,通过用三对新数据替换前三对获取的数据对来更新相关模型。对超过120000条计算机生成的呼吸轨迹进行的跟踪模拟表明,这种跟踪方法在内部目标位置预测中导致了显著的误差,尤其是在存在呼吸运动基线漂移的情况下。为了更好地应对漂移,我们引入了一种具有明确时间依赖性的新型相关模型,并建议用混合模型跟踪(MMT)取代目前应用的线性运动跟踪(LMT)。在MMT中,在检测到基线漂移的情况下,线性相关模型扩展为具有明确的时间依赖性。然后针对与LMT相同的超过120000名计算机生成的患者建立MMT预测准确性。对于150秒的更新间隔,在具有0.25∣0.5毫米/分钟线性呼吸运动基线漂移的患者中,93.7∣97.2%的患者在内部目标位置预测准确性方面,MMT优于LMT,X射线图像数量和治疗时间相似。对于前25%的患者来说,平均三维内部目标位置预测误差减少了0.7∣1.8毫米,而接近最大减少量(前10%的患者)为0.9∣2.0毫米。对于相同数量的采集X射线图像,与LMT相比,MMT大大提高了跟踪准确性,尤其是在存在基线漂移的情况下。即使采集的X射线图像减少了近50%,MMT在内部目标位置预测准确性方面仍然优于LMT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验