Biliak Kateryna, Nikitin Daniil, Ali-Ogly Suren, Protsak Mariia, Pleskunov Pavel, Tosca Marco, Sergievskaya Anastasiya, Cornil David, Cornil Jérôme, Konstantinidis Stephanos, Košutová Tereza, Černochová Zulfiya, Štěpánek Petr, Hanuš Jan, Kousal Jaroslav, Hanyková Lenka, Krakovský Ivan, Choukourov Andrei
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic
ELI-Beamlines Centre, Institute of Physics, Czech Academy of Sciences Dolni Brezany Czech Republic.
Nanoscale Adv. 2022 Dec 22;5(3):955-969. doi: 10.1039/d2na00785a. eCollection 2023 Jan 31.
Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of μm s, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to CuO and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer < 1.4 nm, grafting density < 0.20, and the average distance between the grafted chains > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.
自法拉第实验时代以来,等离子体纳米流体的光学响应已通过纳米颗粒(NPs)的形状、尺寸、浓度和材料,或通过混合不同类型的NPs来进行调控。迄今为止,水基液体是研究最为广泛的主体介质,而聚合物,如聚乙二醇(PEG),经常被添加以引入排斥性空间相互作用并保护NPs不发生团聚。在此,我们引入了一种非水纳米流体的反向体系,其中Ag和Cu NPs分散在PEG(400 g/mol)中,不涉及任何溶剂或化学物质。我们的单步方法包括使用基于溅射的气体聚集簇源在气相中合成金属NPs、NPs的气流传输以及它们在PEG表面的沉积(可选同时进行)。通过计算流体动力学模拟,我们表明NPs以μm/s量级的扩散前沿平均速度扩散到PEG中,这足以实现对整个聚合物本体的高效负载。我们合成了黄色的Ag/PEG、绿色的Cu/PEG和蓝色的Ag/Cu/PEG纳米流体,其颜色由等离子体共振的位置决定。NPs易于发生部分团聚和沉降,Cu的动力学较慢。密度泛函理论计算结合紫外可见数据和zeta电位测量证明,表面氧化为CuO以及更强的静电排斥是Cu NPs具有更高稳定性的原因。采用德热纳形式理论,我们估计PEG分子以蘑菇状配位吸附在NP表面,吸附层厚度<1.4 nm,接枝密度<0.20,接枝链之间的平均距离>0.8 nm。这些值提供了足够的空间位垒来延缓但不能完全防止团聚。总体而言,我们的方法为非水纳米流体的基础研究提供了一个出色的平台,其中金属-聚合物和金属-金属相互作用不受溶剂或化学残留物的干扰。