REPAC:从 RNA-seq 数据中分析可变多聚腺苷酸化。

REPAC: analysis of alternative polyadenylation from RNA-sequencing data.

机构信息

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA.

Department of Computer Science, Johns Hopkins University, Baltimore, USA.

出版信息

Genome Biol. 2023 Feb 9;24(1):22. doi: 10.1186/s13059-023-02865-5.

Abstract

Alternative polyadenylation (APA) is an important post-transcriptional mechanism that has major implications in biological processes and diseases. Although specialized sequencing methods for polyadenylation exist, availability of these data are limited compared to RNA-sequencing data. We developed REPAC, a framework for the analysis of APA from RNA-sequencing data. Using REPAC, we investigate the landscape of APA caused by activation of B cells. We also show that REPAC is faster than alternative methods by at least 7-fold and that it scales well to hundreds of samples. Overall, the REPAC method offers an accurate, easy, and convenient solution for the exploration of APA.

摘要

可变多聚腺苷酸化 (APA) 是一种重要的转录后调控机制,在生物过程和疾病中具有重要意义。尽管存在专门用于多聚腺苷酸化的测序方法,但与 RNA 测序数据相比,这些数据的可用性有限。我们开发了 REPAC,这是一种用于分析 RNA 测序数据中 APA 的框架。使用 REPAC,我们研究了 B 细胞激活引起的 APA 景观。我们还表明,REPAC 比其他方法至少快 7 倍,并且可以很好地扩展到数百个样本。总体而言,REPAC 方法为 APA 的研究提供了一种准确、简单和方便的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/381b/9912678/2411f65028a2/13059_2023_2865_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索