Research Centre in Digitalization and Intelligent Robotics CeDRI, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal.
Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal.
Sensors (Basel). 2023 Jan 22;23(3):1282. doi: 10.3390/s23031282.
Developing innovative systems and operations to monitor forests and send alerts in dangerous situations, such as fires, has become, over the years, a necessary task to protect forests. In this work, a Wireless Sensor Network (WSN) is employed for forest data acquisition to identify abrupt anomalies when a fire ignition starts. Even though a low-power LoRaWAN network is used, each module still needs to save power as much as possible to avoid periodic maintenance since a current consumption peak happens while sending messages. Moreover, considering the LoRaWAN characteristics, each module should use the bandwidth only when essential. Therefore, four algorithms were tested and calibrated along real and monitored events of a wildfire. The first algorithm is based on the Exponential Smoothing method, Moving Averages techniques are used to define the other two algorithms, and the fourth uses the Least Mean Square. When properly combined, the algorithms can perform a pre-filtering data acquisition before each module uses the LoRaWAN network and, consequently, save energy if there is no necessity to send data. After the validations, using Wildfire Simulation Events (WSE), the developed filter achieves an accuracy rate of 0.73 with 0.5 possible false alerts. These rates do not represent a final warning to firefighters, and a possible improvement can be achieved through cloud-based server algorithms. By comparing the current consumption before and after the proposed implementation, the modules can save almost 53% of their batteries when is no demand to send data. At the same time, the modules can maintain the server informed with a minimum interval of 15 min and recognize abrupt changes in 60 s when fire ignition appears.
开发创新的系统和运营方式来监测森林并在危险情况下(如火灾)发送警报,已成为保护森林的必要任务。在这项工作中,使用无线传感器网络(WSN)来获取森林数据,以识别火灾发生时的突然异常。即使使用低功耗的 LoRaWAN 网络,每个模块仍需要尽可能节省电力,以避免因发送消息而出现电流消耗峰值时的定期维护。此外,考虑到 LoRaWAN 的特点,每个模块只有在必要时才应使用带宽。因此,测试和校准了四个算法,这些算法都是基于真实和监测的野火事件。第一个算法基于指数平滑法,另外两个算法使用移动平均技术来定义,第四个算法使用最小均方算法。当正确组合时,这些算法可以在每个模块使用 LoRaWAN 网络之前执行数据采集的预滤波,并且如果没有必要发送数据,就可以节省能源。经过验证,使用野火模拟事件(WSE),开发的滤波器的准确率为 0.73,可能的误报率为 0.5。这些比率并不代表对消防员的最终警告,并且可以通过基于云的服务器算法来实现可能的改进。通过比较实施前后的电流消耗,当没有数据发送需求时,模块可以节省近 53%的电池电量。同时,模块可以以最小间隔 15 分钟保持服务器的信息,并在出现火灾时在 60 秒内识别出突然的变化。