Suppr超能文献

基于机器学习的 5G 信号 LOS 检测及其在机场环境中的应用。

Machine-Learning-Based LOS Detection for 5G Signals with Applications in Airport Environments.

机构信息

Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland.

出版信息

Sensors (Basel). 2023 Jan 28;23(3):1470. doi: 10.3390/s23031470.

Abstract

The operational costs of the advanced Air Traffic Management (ATM) solutions are often prohibitive in low- and medium-sized airports. Therefore, new and complementary solutions are currently under research in order to take advantage of existing infrastructure and offer low-cost alternatives. The 5G signals are particularly attractive in an ATM context due to their promising potential in wireless positioning and sensing via Time-of-Arrival (ToA) and Angle-of-Arrival (AoA) algorithms. However, ToA and AoA methods are known to be highly sensitive to the presence of multipath and Non-Line-of-Sight (NLOS) scenarios. Yet, LOS detection in the context of 5G signals has been poorly addressed in the literature so far, to the best of the Authors' knowledge. This paper focuses on LOS/NLOS detection methods for 5G signals by using both statistical/model-driven and data-driven/machine learning (ML) approaches and three challenging channel model classes widely used in 5G: namely Tapped Delay Line (TDL), Clustered Delay Line (CDL) and Winner II channel models. We show that, with simulated data, the ML-based detection can reach between 80% and 98% detection accuracy for TDL, CDL and Winner II channel models and that TDL is the most challenging in terms of LOS detection capabilities, as its richness of features is the lowest compared to CDL and Winner II channels. We also validate the findings through in-lab measurements with 5G signals and Yagi and 3D-vector antenna and show that measurement-based detection probabilities can reach 99-100% with a sufficient amount of training data and XGBoost or Random Forest classifiers.

摘要

先进空中交通管理 (ATM) 解决方案的运营成本在中小机场通常过高。因此,目前正在研究新的和补充性的解决方案,以便利用现有基础设施并提供低成本的替代方案。在 ATM 环境中,5G 信号特别有吸引力,因为它们在通过到达时间 (ToA) 和到达角 (AoA) 算法进行无线定位和感测方面具有很有前景的潜力。然而,ToA 和 AoA 方法已知对多径和非视距 (NLOS) 场景非常敏感。然而,到目前为止,文献中对 5G 信号中的 LOS 检测的研究很少,据作者所知。本文重点介绍了使用统计/模型驱动和数据驱动/机器学习 (ML) 方法以及在 5G 中广泛使用的三种具有挑战性的信道模型类别的 5G 信号的 LOS/NLOS 检测方法: tapped delay line (TDL)、clustered delay line (CDL) 和 Winner II 信道模型。我们表明,使用模拟数据,基于 ML 的检测对于 TDL、CDL 和 Winner II 信道模型可以达到 80%到 98%的检测精度,并且 TDL 在 LOS 检测能力方面是最具挑战性的,因为与 CDL 和 Winner II 信道相比,其特征的丰富度最低。我们还通过使用 5G 信号和 Yagi 和 3D-vector 天线进行的实验室测量验证了这些发现,并表明基于测量的检测概率可以通过足够数量的训练数据和 XGBoost 或随机森林分类器达到 99-100%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e53a/9920163/2511a0db88e6/sensors-23-01470-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验