University of Chinese Academy of Sciences, Beijing 100049, China.
Innovation Academy for Microsatellites of CAS, Shanghai 200120, China.
Sensors (Basel). 2023 Feb 3;23(3):1703. doi: 10.3390/s23031703.
The time maintenance accuracy of the navigation constellation determines the user positioning and timing performance. Especially in autonomous operation scenarios, the performance of navigation constellation maintenance time directly affects the duration of constellation autonomous navigation. Among them, the frequency stability of the atomic clock onboard the navigation satellite is a key factor. In order to further improve the stability of the navigation constellation time-frequency system, combined with the development of high-precision inter-satellite link measurement technology, the idea of constructing constellation-level synthetic atomic time has gradually become the development trend of major GNSS systems. This paper gives a navigation constellation time scale generation framework, and designs an improved Kalman plus weights (KPW) time scale algorithm and time-frequency steer algorithm that integrates genetic algorithms. Finally, a 30-day autonomous timekeeping simulation was carried out using the GPS precision clock data provided by CODE, when the sampling interval is 300 s, the Allan deviation of the output time scale is 5.73 × 10, a 71% improvement compared with the traditional KPW time scale algorithm; when the sampling interval is 1 day, the Allan deviation is 9.17 × 10; when the sampling interval is 1 × 10 s, the Allan deviation is 8.87 × 10, a 94% improvement compared with the traditional KPW time scale algorithm. The constellation-level high-precision time scale generation technology proposed in this paper can significantly improve the stability performance of navigation constellation autonomous timekeeping.
导航星座的时间保持精度决定了用户的定位和定时性能。特别是在自主运行场景中,导航星座维护时间的性能直接影响星座自主导航的持续时间。其中,导航卫星上原子钟的频率稳定性是一个关键因素。为了进一步提高导航星座时频系统的稳定性,结合高精度星间链路测量技术的发展,构建星座级综合原子时的思想逐渐成为各大 GNSS 系统的发展趋势。本文给出了一种导航星座时标生成框架,并设计了一种改进的卡尔曼加权(KPW)时标算法和遗传算法集成的时频引导算法。最后,使用 CODE 提供的 GPS 精密钟数据进行了 30 天的自主守时模拟,当采样间隔为 300s 时,输出时标的 Allan 偏差为 5.73×10,与传统 KPW 时标算法相比提高了 71%;当采样间隔为 1 天时,Allan 偏差为 9.17×10;当采样间隔为 1×10s 时,Allan 偏差为 8.87×10,与传统 KPW 时标算法相比提高了 94%。本文提出的星座级高精度时标生成技术可以显著提高导航星座自主守时的稳定性性能。