Suppr超能文献

潜在的ATP竞争性细胞周期蛋白依赖性激酶1抑制剂的鉴定:从头药物生成、分子对接和分子动力学模拟。

Identification of potential ATP-competitive cyclin-dependent kinase 1 inhibitors: De novo drug generation, molecular docking, and molecular dynamics simulation.

作者信息

He Fengming, Wang Xiumei, Wu Qiaoqiong, Liu Shunzhi, Cao Yin, Guo Xiaodan, Yin Sihang, Yin Na, Li Baicun, Fang Meijuan

机构信息

Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.

School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China.

出版信息

Comput Biol Med. 2023 Mar;155:106645. doi: 10.1016/j.compbiomed.2023.106645. Epub 2023 Feb 8.

Abstract

Cyclin-dependent kinases 1 (CDK1) has been identified as a potential target for the search for new antitumor drugs. However, no clinically effective CDK1 inhibitors are now available for cancer treatment. Therefore, this study aimed to offer potential CDK1 inhibitors using de novo drug generation, molecular docking, and molecular dynamics (MD) simulation studies. We first utilized the BREED algorithm (a de novo drug generation approach) to produce a novel library of small molecules targeting CDK1. To initially obtain novel potential CDK1 inhibitors with favorable physicochemical properties and excellent druggability, we performed a virtual rule-based rational drug screening on our generated library and found ten initial hits. Then, the molecular interactions and dynamic stability of these ten initial hits and CDK1 complexes during their all-atom MD simulations (total 18 μs) and binding pose metadynamics simulations were investigated, resulting in five final hits. Furthermore, another MD simulation (total 2.1 μs) with different force fields demonstrated the binding ability of the five hits to CDK1. It was found that these five hits, CBMA001 (ΔG = -29.88 kcal/mol), CBMA002 (ΔG = -34.89 kcal/mol), CBMA004 (ΔG = -32.47 kcal/mol), CBMA007 (ΔG = -31.16 kcal/mol), and CBMA008 (ΔG = -34.78 kcal/mol) possessed much greater binding affinity to CDK1 than positive compound Flavopiridol (FLP, ΔG = -25.38 kcal/mol). Finally, CBMA002 and CBMA004 were identified as excellent selective CDK1 inhibitors in silico. Together, this study provides a workflow for rational drug design and two promising selective CDK1 inhibitors that deserve further investigation.

摘要

细胞周期蛋白依赖性激酶1(CDK1)已被确定为寻找新型抗肿瘤药物的潜在靶点。然而,目前尚无临床上有效的CDK1抑制剂可用于癌症治疗。因此,本研究旨在通过从头药物设计、分子对接和分子动力学(MD)模拟研究来提供潜在的CDK1抑制剂。我们首先利用BREED算法(一种从头药物设计方法)生成了一个针对CDK1的新型小分子文库。为了初步获得具有良好理化性质和出色成药性的新型潜在CDK1抑制剂,我们对生成的文库进行了基于虚拟规则的合理药物筛选,发现了10个初始命中化合物。然后,研究了这10个初始命中化合物与CDK1复合物在全原子MD模拟(共18微秒)和结合姿态元动力学模拟过程中的分子相互作用和动态稳定性,最终得到5个命中化合物。此外,另一个使用不同力场的MD模拟(共2.1微秒)证明了这5个命中化合物与CDK1的结合能力。结果发现,这5个命中化合物CBMA001(ΔG = -29.88千卡/摩尔)、CBMA002(ΔG = -34.89千卡/摩尔)、CBMA004(ΔG = -32.47千卡/摩尔)、CBMA007(ΔG = -31.16千卡/摩尔)和CBMA008(ΔG = -34.78千卡/摩尔)与CDK1的结合亲和力远高于阳性对照化合物黄酮哌啶醇(FLP,ΔG = -25.38千卡/摩尔)。最后,CBMA002和CBMA004在计算机模拟中被确定为优秀的选择性CDK1抑制剂。总之,本研究提供了一种合理药物设计的工作流程以及两种有前景的选择性CDK1抑制剂,值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验