Suppr超能文献

脑机接口通过侵入性皮层脑电图对一名四肢瘫痪患者的上肢运动想象进行步行动作控制。

Brain-Computer interface control of stepping from invasive electrocorticography upper-limb motor imagery in a patient with quadriplegia.

作者信息

Cajigas Iahn, Davis Kevin C, Prins Noeline W, Gallo Sebastian, Naeem Jasim A, Fisher Letitia, Ivan Michael E, Prasad Abhishek, Jagid Jonathan R

机构信息

Department of Neurological Surgery, University of Pennsylvania, Philadelphia, PA, United States.

Department of Biomedical Engineering, University of Miami, Miami, FL, United States.

出版信息

Front Hum Neurosci. 2023 Jan 9;16:1077416. doi: 10.3389/fnhum.2022.1077416. eCollection 2022.

Abstract

Most spinal cord injuries (SCI) result in lower extremities paralysis, thus diminishing ambulation. Using brain-computer interfaces (BCI), patients may regain leg control using neural signals that actuate assistive devices. Here, we present a case of a subject with cervical SCI with an implanted electrocorticography (ECoG) device and determined whether the system is capable of motor-imagery-initiated walking in an assistive ambulator. A 24-year-old male subject with cervical SCI (C5 ASIA A) was implanted before the study with an ECoG sensing device over the sensorimotor hand region of the brain. The subject used motor-imagery (MI) to train decoders to classify sensorimotor rhythms. Fifteen sessions of closed-loop trials followed in which the subject ambulated for one hour on a robotic-assisted weight-supported treadmill one to three times per week. We evaluated the stability of the best-performing decoder over time to initiate walking on the treadmill by decoding upper-limb (UL) MI. An online bagged trees classifier performed best with an accuracy of 84.15% averaged across 9 weeks. Decoder accuracy remained stable following throughout closed-loop data collection. These results demonstrate that decoding UL MI is a feasible control signal for use in lower-limb motor control. Invasive BCI systems designed for upper-extremity motor control can be extended for controlling systems beyond upper extremity control alone. Importantly, the decoders used were able to use the invasive signal over several weeks to accurately classify MI from the invasive signal. More work is needed to determine the long-term consequence between UL MI and the resulting lower-limb control.

摘要

大多数脊髓损伤(SCI)会导致下肢瘫痪,从而影响行走能力。利用脑机接口(BCI),患者可以通过驱动辅助设备的神经信号重新获得对腿部的控制。在此,我们报告一例患有颈髓损伤的受试者,其植入了皮层脑电图(ECoG)设备,并确定该系统是否能够在辅助步行器中通过运动想象启动行走。一名24岁患有颈髓损伤(C5 ASIA A级)的男性受试者在研究前于大脑感觉运动手部区域植入了ECoG传感设备。该受试者使用运动想象(MI)来训练解码器对感觉运动节律进行分类。随后进行了15次闭环试验,受试者每周在机器人辅助的减重跑步机上行走1至3次,每次行走1小时。我们评估了表现最佳的解码器随时间的稳定性,以通过解码上肢(UL)运动想象来启动跑步机上的行走。在线袋装树分类器表现最佳,在9周内平均准确率为84.15%。在整个闭环数据收集过程中,解码器的准确率保持稳定。这些结果表明,解码上肢运动想象是用于下肢运动控制的可行控制信号。为上肢运动控制设计的侵入性脑机接口系统可以扩展到不仅控制上肢,还能控制其他系统。重要的是,所使用的解码器能够在数周内利用侵入性信号准确地从侵入性信号中分类运动想象。需要更多的研究来确定上肢运动想象与由此产生的下肢控制之间的长期影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ccd/9912159/1d823cbf2852/fnhum-16-1077416-g0001.jpg

相似文献

1
Brain-Computer interface control of stepping from invasive electrocorticography upper-limb motor imagery in a patient with quadriplegia.
Front Hum Neurosci. 2023 Jan 9;16:1077416. doi: 10.3389/fnhum.2022.1077416. eCollection 2022.
3
Brain-computer interface controlled robotic gait orthosis.
J Neuroeng Rehabil. 2013 Dec 9;10:111. doi: 10.1186/1743-0003-10-111.
9
Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury.
Brain Commun. 2021 Oct 21;3(4):fcab248. doi: 10.1093/braincomms/fcab248. eCollection 2021.
10
User Adaptation to Closed-Loop Decoding of Motor Imagery Termination.
IEEE Trans Biomed Eng. 2021 Jan;68(1):3-10. doi: 10.1109/TBME.2020.3001981. Epub 2020 Dec 21.

引用本文的文献

1
Exploring the Impact of Brain-Computer Interfaces on Health Care: Innovations, Challenges, and Future Prospects: A Review Article.
J Pharm Bioallied Sci. 2024 Dec;16(Suppl 4):S3037-S3040. doi: 10.4103/jpbs.jpbs_1005_24. Epub 2024 Oct 29.

本文引用的文献

3
Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury.
Brain Commun. 2021 Oct 21;3(4):fcab248. doi: 10.1093/braincomms/fcab248. eCollection 2021.
4
Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review.
Sensors (Basel). 2021 Jun 24;21(13):4312. doi: 10.3390/s21134312.
5
High-performance brain-to-text communication via handwriting.
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
8
Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application.
Comput Biol Med. 2020 Aug;123:103843. doi: 10.1016/j.compbiomed.2020.103843. Epub 2020 Jun 7.
9
Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network.
J Neural Eng. 2020 Jul 13;17(4):046011. doi: 10.1088/1741-2552/ab9842.
10
An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration.
Lancet Neurol. 2019 Dec;18(12):1112-1122. doi: 10.1016/S1474-4422(19)30321-7. Epub 2019 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验