Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts.
Clin Cancer Res. 2023 May 1;29(9):1807-1821. doi: 10.1158/1078-0432.CCR-22-3668.
BRD9 is a defining component of the noncanonical SWI/SNF complex, which regulates gene expression by controlling chromatin dynamics. Although recent studies have found an oncogenic role for BRD9 in multiple cancer types including multiple myeloma, its clinical significance and oncogenic mechanism have not yet been elucidated. Here, we sought to identify the clinical and biological impact of BRD9 in multiple myeloma, which may contribute to the development of novel therapeutic strategies.
We performed integrated analyses of BRD9 in vitro and in vivo using multiple myeloma cell lines and primary multiple myeloma cells in established preclinical models, which identified the molecular functions of BRD9 contributing to multiple myeloma cell survival.
We found that high BRD9 expression was a poor prognostic factor in multiple myeloma. Depleting BRD9 by genetic (shRNA) and pharmacologic (dBRD9-A; proteolysis-targeting chimera; BRD9 degrader) approaches downregulated ribosome biogenesis genes, decreased the expression of the master regulator MYC, and disrupted the protein-synthesis maintenance machinery, thereby inhibiting multiple myeloma cell growth in vitro and in vivo in preclinical models. Importantly, we identified that the expression of ribosome biogenesis genes was associated with the disease progression and prognosis of patients with multiple myeloma. Our results suggest that BRD9 promotes gene expression by predominantly occupying the promoter regions of ribosome biogenesis genes and cooperating with BRD4 to enhance the transcriptional function of MYC.
Our study identifies and validates BRD9 as a novel therapeutic target in preclinical models of multiple myeloma, which provides the framework for the clinical evaluation of BRD9 degraders to improve patient outcome.
BRD9 是非典型 SWI/SNF 复合物的一个定义性组成部分,它通过控制染色质动力学来调节基因表达。尽管最近的研究在包括多发性骨髓瘤在内的多种癌症类型中发现了 BRD9 的致癌作用,但它的临床意义和致癌机制尚未阐明。在这里,我们试图确定 BRD9 在多发性骨髓瘤中的临床和生物学影响,这可能有助于开发新的治疗策略。
我们使用多发性骨髓瘤细胞系和已建立的临床前模型中的原代多发性骨髓瘤细胞,对 BRD9 进行了体外和体内的综合分析,确定了 BRD9 促进多发性骨髓瘤细胞存活的分子功能。
我们发现 BRD9 高表达是多发性骨髓瘤的一个不良预后因素。通过遗传(shRNA)和药理学(dBRD9-A;蛋白水解靶向嵌合体;BRD9 降解剂)方法敲低 BRD9,下调核糖体生物发生基因,降低主调控因子 MYC 的表达,并破坏蛋白质合成维持机制,从而抑制多发性骨髓瘤细胞在体外和临床前模型中的生长。重要的是,我们发现核糖体生物发生基因的表达与多发性骨髓瘤患者的疾病进展和预后相关。我们的研究结果表明,BRD9 通过主要占据核糖体生物发生基因的启动子区域并与 BRD4 合作来增强 MYC 的转录功能来促进基因表达。
我们的研究在多发性骨髓瘤的临床前模型中确定并验证了 BRD9 作为一种新的治疗靶点,为临床评估 BRD9 降解剂以改善患者预后提供了框架。