Suppr超能文献

通过 FRET 策略原位生物合成的 BC/CQDs@PCN-224 膜增强的光动力活性。

Photodynamic activity enhanced by in situ biosynthetic BC/CQDs@PCN-224 membranes through FRET strategy.

机构信息

Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.

College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi 830046, China.

出版信息

Carbohydr Polym. 2023 May 1;307:120623. doi: 10.1016/j.carbpol.2023.120623. Epub 2023 Jan 25.

Abstract

Porphyrin-based metal organic frameworks (MOFs) with efficient bactericidal performance have increasingly attracted attention in photodynamic inactivation materials. However, low reactive oxygen species (ROS) yield and drug residue hazards of current porphyrin-MOFs materials lead to unsatisfactory clinical therapeutic effects. In this paper, carbon quantum dots (CQDs) were encapsulated into PCN-224, which enhanced the photodynamic activity of the MOFs through fluorescence resonance energy transfer (FRET) process. Singlet oxygen (O) detection confirmed that the photodynamic activity of CQDs-doped PCN-224 (CQDs@PCN-224) was enhanced than that of pristine PCN-224 under illumination. Furthermore, the CQDs@PCN-224 were firmly embedded into bacterial cellulose (BC) nanofibrous membranes by using an eco-friendly biosynthetic approach, efficiently preventing MOFs leakage during use. The results of bactericidal assays demonstrated that BC/CQDs@PCN-224 membrane with higher photodynamic activity causes more severe disruption to bacterial structure and possesses better antibacterial efficiency (>99.99 % reduction of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli O157:H7 within 30 min) than BC/PCN-224 membrane under visible light illumination (500 W, 15 cm height, λ ≥ 420 nm). In addition, the biosynthesized BC/CQDs@PCN-224 membrane showed good hemocompatibility and low cytotoxicity, revealing that the BC- and MOFs-based material with enhanced PDI efficiency and satisfying safety has great potential in medical fields.

摘要

基于卟啉的金属有机骨架(MOFs)具有高效的杀菌性能,在光动力灭活材料中越来越受到关注。然而,目前卟啉-MOFs 材料的活性氧(ROS)产量低和药物残留危害导致临床治疗效果不理想。本文将碳量子点(CQDs)封装到 PCN-224 中,通过荧光共振能量转移(FRET)过程增强了 MOFs 的光动力活性。单线态氧(O)检测证实,在光照下,CQDs 掺杂的 PCN-224(CQDs@PCN-224)的光动力活性强于原始 PCN-224。此外,通过一种环保的生物合成方法,将 CQDs@PCN-224 牢固地嵌入到细菌纤维素(BC)纳米纤维膜中,在使用过程中有效地防止 MOFs 泄漏。杀菌试验结果表明,具有更高光动力活性的 BC/CQDs@PCN-224 膜会导致细菌结构更严重的破坏,并且具有更好的抗菌效率(在 30 分钟内,革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌 O157:H7 的减少率均大于 99.99%),优于可见光照射下的 BC/PCN-224 膜(500 W,15 cm 高度,λ≥420nm)。此外,生物合成的 BC/CQDs@PCN-224 膜表现出良好的血液相容性和低细胞毒性,表明具有增强 PDI 效率和令人满意的安全性的基于 BC 和 MOFs 的材料在医学领域具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验