Suppr超能文献

使用微电极测量离子交换膜中的气体质量传输系数

Gas Mass-Transport Coefficients in Ionomer Membranes Using a Microelectrode.

作者信息

Petrovick John G, Radke Clayton J, Weber Adam Z

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

ACS Meas Sci Au. 2022 Feb 2;2(3):208-218. doi: 10.1021/acsmeasuresciau.1c00058. eCollection 2022 Jun 15.

Abstract

Gas permeability, the product of gas diffusivity and Henry's gas-absorption constant, of ionomer membranes is an important transport parameter in fuel cell and electrolyzer research as it governs gas crossover between electrodes and perhaps in the catalyst layers as well. During transient operation, it is important to divide the gas permeability into its constituent properties as they are individually important. Although transient microelectrode measurements have been used previously to separate the gas permeability into these two parameters, inconsistencies remain in the interpretation of the experimental techniques. In this work, a new interpretation methodology is introduced for determining independently diffusivity and Henry's constant of hydrogen and oxygen gases in ionomer membranes (Nafion 211 and Nafion XL) as a function of relative humidity using microelectrodes. Two time regimes are accounted for. At long times, gas permeability is determined from a two-dimensional numerical model that calculates the solubilized-gas concentration profiles at a steady state. At short times, permeability is deconvoluted into diffusivity and Henry's constant by analyzing transient data with an extended Cottrell equation that corrects for actual electrode surface area. Gas permeability and diffusivity increase as relative humidity increases for both gases in both membranes, whereas Henry's constants for both gases decrease with increasing relative humidity. In addition, results for Nafion 211 membranes are compared to a simple phase-separated parallel-diffusion transport theory with good agreement. The two-time-regime analysis and the experimental methodology can be applied to other electrochemical systems to enable greater precision in the calculation of transport parameters and to further understanding of gas transport in fuel cells and electrolyzers.

摘要

离子交换膜的气体渗透率是气体扩散率与亨利气体吸收常数的乘积,在燃料电池和电解槽研究中是一个重要的传输参数,因为它控制着电极之间以及可能在催化剂层中的气体渗透。在瞬态运行期间,将气体渗透率分解为其组成特性很重要,因为它们各自都很重要。尽管先前已使用瞬态微电极测量将气体渗透率分离为这两个参数,但在实验技术的解释上仍存在不一致之处。在这项工作中,引入了一种新的解释方法,用于使用微电极独立测定离子交换膜(Nafion 211和Nafion XL)中氢气和氧气的扩散率以及亨利常数与相对湿度的函数关系。考虑了两个时间范围。在长时间下,气体渗透率由二维数值模型确定,该模型计算稳态下溶解气体的浓度分布。在短时间内,通过使用校正实际电极表面积的扩展科特雷尔方程分析瞬态数据,将渗透率解卷积为扩散率和亨利常数。两种膜中两种气体的气体渗透率和扩散率均随相对湿度的增加而增加,而两种气体的亨利常数均随相对湿度的增加而降低。此外,将Nafion 211膜的结果与简单的相分离平行扩散传输理论进行了比较,结果吻合良好。这种双时间范围分析和实验方法可应用于其他电化学系统,以提高传输参数计算的精度,并进一步了解燃料电池和电解槽中的气体传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc93/9838820/95d7af1733d9/tg1c00058_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验