Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas, USA.
Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.
mSystems. 2023 Apr 27;8(2):e0062222. doi: 10.1128/msystems.00622-22. Epub 2023 Feb 14.
In Bacillus subtilis, master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0AP) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0AP induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems.
在枯草芽孢杆菌中,主调控因子 Spo0A 控制着几种细胞分化途径。在适度饥饿条件下,磷酸化 Spo0A(Spo0AP)通过 SinI-SinR-SlrR 网络间接激活控制基质产生的基因,从而诱导生物膜的形成,该网络作用于细胞的亚群。在严重饥饿条件下,Spo0AP 通过直接和间接调控孢子形成基因的表达来诱导孢子形成。然而,是什么决定了单个细胞命运的异质性还不完全清楚。特别是,尽管生物膜基质的产生和孢子形成都受到单个主调控因子的控制,但为什么在单细胞水平上它们似乎是相互排斥的,这一点仍不清楚。在这项工作中,我们通过数学建模表明,在 SinI-SinR-SlrR 网络的双稳态中,细胞生长速率的波动和内在噪声的放大,可以解释基质产生的单细胞分布。此外,我们预测了一个非相干的前馈回路;细胞生长速率的降低首先通过增加 Spo0A 磷酸化水平来激活基质产生,但随后通过改变 SinR 和 SlrR 的相对浓度来抑制它。实验数据为模型预测提供了证据支持。特别是,我们证明了基质产生和孢子形成相互排斥的程度是如何受到遗传扰动的影响的。细胞命运决策的机制对于我们理解多细胞生物和细菌群落是至关重要的。然而,即使是在研究得最好的模型系统中,我们仍然缺乏对遗传上相同的细胞表型异质性是如何被控制的完整认识。在这里,我们以枯草芽孢杆菌为模型系统,采用数学建模和实验相结合的方法,解释了基质基因表达的群体水平动态和单细胞水平异质性。结果表明,在不明确抑制其中任何一种的情况下,生物膜基质的产生和孢子形成这两种细胞命运是如何相互排斥的。这种机制可以在广泛的其他生物系统中使用。