Suppr超能文献

地核-地幔边界地震速度异常的核心起源。

Core origin of seismic velocity anomalies at Earth's core-mantle boundary.

机构信息

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.

Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan.

出版信息

Nature. 2023 Mar;615(7953):646-651. doi: 10.1038/s41586-023-05713-5. Epub 2023 Feb 15.

Abstract

Seismic studies have found fine-scale anomalies at the core-mantle boundary (CMB), such as ultralow velocity zones (ULVZs) and the core rigidity zone. ULVZs have been attributed to mantle-related processes, but little is known about a possible core origin. The precipitation of light elements in the outer core has been proposed to explain the core rigidity zone, but it remains unclear what processes can lead to such precipitation. Despite its importance for the outer core, the melting behaviour of Fe-Si-H at relevant pressure-temperature conditions is not well understood. Here we report observations of the crystallization of B2 FeSi from Fe-9wt%Si melted in the presence of hydrogen up to 125 GPa and 3,700 K by using laser-heated diamond anvil cells. Hydrogen dramatically increases the Si concentration in the B2 crystals to a molar ratio of Si:Fe ≈ 1, whereas it mostly remains in the coexisting Fe liquid. The high Si content in the B2 phase makes it stable in a solid form at the outermost core temperatures and less dense than the surrounding liquids. Consequently, the Si-rich crystallites could form, float and be sedimented to the underside of the CMB interface, and that well explains the core side rigidity anomalies. If a small amount of the FeSi crystals can be incorporated into the mantle, they would form dense low-velocity structures above the CMB, which may account for some ULVZs. The B2 FeSi precipitation promoted by H in the outermost core provides a single core-driven origin for two types of anomalies at the CMB. Such a scenario could also explain the core-like tungsten isotope signatures in ocean island basalts, after the materials equilibrated with the precipitates are entrained to the uppermost mantle by the mantle plumes connected to ULVZs.

摘要

地震研究在核幔边界(CMB)发现了精细尺度的异常,如超低速度区(ULVZ)和核刚性区。ULVZ 归因于地幔相关过程,但对于可能的核起源知之甚少。有人提出,在外核中轻元素的沉淀可以解释核刚性区,但仍不清楚哪些过程可以导致这种沉淀。尽管它对外核很重要,但在相关压力-温度条件下 Fe-Si-H 的熔融行为仍未得到很好的理解。在这里,我们通过使用激光加热金刚石压腔报告了在氢存在下,Fe-9wt%Si 熔融至 125 GPa 和 3700 K 时 B2 FeSi 结晶的观察结果。氢极大地增加了 B2 晶体中的 Si 浓度,达到摩尔比 Si:Fe≈1,而氢主要仍留在共存的 Fe 液体中。B2 相中高的 Si 含量使其在最外层地核温度下以固态稳定存在,密度小于周围液体。因此,富含 Si 的晶体颗粒可以形成、漂浮并沉降到 CMB 界面的下方,这很好地解释了核侧刚性异常。如果少量的 FeSi 晶体可以被纳入地幔,它们将在 CMB 上方形成高密度的低速结构,这可能解释了一些 ULVZ。在最外层地核中 H 促进的 B2 FeSi 沉淀为 CMB 上的两种类型的异常提供了单一的核驱动起源。在与沉淀平衡的物质通过与 ULVZ 相连的地幔羽流被夹带至上地幔后,这种情景也可以解释大洋岛玄武岩中的类似核的钨同位素特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验