Suppr超能文献

重症监护病房耐碳青霉烯类革兰阴性菌感染患者:抗生素耐药性分析及预测模型的建立。

Carbapenem-resistant gram-negative bacterial infection in intensive care unit patients: Antibiotic resistance analysis and predictive model development.

机构信息

Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.

Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.

出版信息

Front Cell Infect Microbiol. 2023 Jan 30;13:1109418. doi: 10.3389/fcimb.2023.1109418. eCollection 2023.

Abstract

In this study, we analyzed the antibiotic resistance of carbapenem-resistant gram-negative bacteria (CR-GNB) in intensive care unit (ICU) patients and developed a predictive model. We retrospectively collected the data of patients with GNB infection admitted to the ICU of the First Affiliated Hospital of Fujian Medical University, who were then divided into a CR and a carbapenem-susceptible (CS) group for CR-GNB infection analysis. Patients admitted between December 1, 2017, and July 31, 2019, were assigned to the experimental cohort (n = 205), and their data were subjected to multivariate logistic regression analysis to identify independent risk factors for constructing the nomogram-based predictive model. Patients admitted between August 1, 2019, and September 1, 2020, were assigned to the validation cohort for validating the predictive model (n = 104). The Hosmer-Lemeshow test and receiver operating characteristic (ROC) curve analysis were used to validate the model's performance. Overall, 309 patients with GNB infection were recruited. Of them, 97 and 212 were infected with CS-GNB and CR-GNB, respectively. Carbapenem-resistant (CRKP), carbapenem-resistant (CRAB) and carbapenem-resistant (CRPA) were the most prevalent CR-GNB. The multivariate logistic regression analysis results of the experimental cohort revealed that a history of combination antibiotic treatments (OR: 3.197, 95% CI: 1.561-6.549), hospital-acquired infection (OR: 3.563, 95% CI: 1.062-11.959) and mechanical ventilation ≥ 7 days (OR: 5.096, 95% CI: 1.865-13.923) were independent risk factors for CR-GNB infection, which were then used for nomogram construction. The model demonstrated a good fit of observed data ( = 0.999), with an area under the ROC curve (AUC) of 0.753 (95% CI: 0.685-0.820) and 0.718 (95% CI: 0.619-0.816) for the experimental and validation cohort, respectively. The decision curve analysis results suggested that the model has a high practical value for clinical practice. The Hosmer-Lemeshow test indicated a good fit of the model in the validation cohort (-value, 0.278). Overall, our proposed predictive model exhibited a good predictive value in identifying patients at high risk of developing CR-GNB infection in the ICU and could be used to guide preventive and treatment measures.

摘要

在这项研究中,我们分析了重症监护病房(ICU)患者中耐碳青霉烯类革兰氏阴性菌(CR-GNB)的抗生素耐药性,并建立了一个预测模型。我们回顾性收集了福建医科大学第一附属医院 ICU 收治的革兰氏阴性菌感染患者的数据,然后将其分为耐碳青霉烯类(CR)和碳青霉烯类敏感(CS)组,以分析 CR-GNB 感染。2017 年 12 月 1 日至 2019 年 7 月 31 日入院的患者被分配到实验组(n = 205),并对其数据进行多变量逻辑回归分析,以确定构建基于列线图的预测模型的独立危险因素。2019 年 8 月 1 日至 2020 年 9 月 1 日入院的患者被分配到验证队列,以验证预测模型(n = 104)。Hosmer-Lemeshow 检验和受试者工作特征(ROC)曲线分析用于验证模型的性能。总的来说,共招募了 309 例 GNB 感染患者,其中 CS-GNB 感染 97 例,CR-GNB 感染 212 例。耐碳青霉烯类 (CRKP)、耐碳青霉烯类 (CRAB)和耐碳青霉烯类 (CRPA)是最常见的 CR-GNB。实验组的多变量逻辑回归分析结果显示,联合使用抗生素治疗史(OR:3.197,95%CI:1.561-6.549)、医院获得性感染(OR:3.563,95%CI:1.062-11.959)和机械通气≥7 天(OR:5.096,95%CI:1.865-13.923)是 CR-GNB 感染的独立危险因素,这些因素被用于构建列线图。该模型显示出对观察数据的良好拟合( = 0.999),在实验组和验证组的 ROC 曲线下面积(AUC)分别为 0.753(95%CI:0.685-0.820)和 0.718(95%CI:0.619-0.816),在验证组中的表现较好。决策曲线分析结果表明,该模型在临床实践中具有较高的实用价值。Hosmer-Lemeshow 检验表明模型在验证组中的拟合度较好(-值为 0.278)。总的来说,我们提出的预测模型在识别 ICU 中发生 CR-GNB 感染风险较高的患者方面具有良好的预测价值,并可用于指导预防和治疗措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777a/9922834/4c3b5888c88e/fcimb-13-1109418-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验