Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901 Brazil.
Phys Rev E. 2023 Jan;107(1-2):015103. doi: 10.1103/PhysRevE.107.015103.
Fluid-fluid interfaces, laden with polymers, surfactants, lipid bilayers, proteins, solid particles, or other surface-active agents, often exhibit a rheologically complex response to deformations. Despite its academic and practical relevance to fluid dynamics and various other fields of research, the role of interfacial rheology in viscous fingering remains fairly underexplored. A noteworthy exception is the work by Li and Manikantan [Phys. Rev. Fluids 6, 074001 (2021)2469-990X10.1103/PhysRevFluids.6.074001], who used linear stability analysis to show that surface rheological stresses act to stabilize the development of radial viscous fingering at the linear regime. In this paper, we perform a perturbative, second-order mode-coupling analysis of the system and investigate the influence of interfacial rheology on the morphology of the fingering structures at early nonlinear stages of the dynamics. In particular, we focus on understanding how interfacial rheology impacts the emblematic finger tip-widening and finger tip-splitting phenomena that take place in radial viscous fingering in Hele-Shaw cells. We describe the viscous Newtonian fluid-fluid interface by using a Boussinesq-Scriven model, and derive a generalized Young-Laplace pressure jump condition at the fluid-fluid interface. In this framing, we go beyond the purely linear description and use Darcy's law to obtain a perturbative mode-coupling differential equation which describes the time evolution of the perturbation amplitudes, accurate to second order. Our early nonlinear mode-coupling results indicate that regardless of their stabilizing action at the linear regime, interfacial rheology effects favor finger tip widening, leading to the occurrence of enhanced finger tip-splitting events.
在充满聚合物、表面活性剂、脂质双层、蛋白质、固体颗粒或其他表面活性剂的流体-流体界面中,通常会对变形表现出复杂的流变响应。尽管界面流变学对流体动力学和其他各个研究领域都具有重要的学术和实际意义,但它在粘性指进中的作用仍未得到充分研究。值得注意的例外是 Li 和 Manikantan 的工作[Phys. Rev. Fluids 6, 074001 (2021)2469-990X10.1103/PhysRevFluids.6.074001],他们使用线性稳定性分析表明,表面流变应力有助于在线性区域稳定径向粘性指进的发展。在本文中,我们对该系统进行了微扰二阶模式耦合分析,并研究了界面流变学对动力学早期非线性阶段指进结构形态的影响。特别是,我们专注于了解界面流变学如何影响在 Hele-Shaw 细胞中发生的径向粘性指进中的标志性指尖变宽和指尖分裂现象。我们使用 Boussinesq-Scriven 模型来描述粘性牛顿流体-流体界面,并在流体-流体界面处推导出广义 Young-Laplace 压力跳跃条件。在这种框架下,我们超越了纯粹的线性描述,并使用达西定律来获得描述微扰幅度随时间演变的微扰模式耦合微分方程,精度达到二阶。我们的早期非线性模式耦合结果表明,无论界面流变学在线性区域的稳定作用如何,它都有利于指尖变宽,从而导致增强的指尖分裂事件的发生。