Suppr超能文献

实验偏倚对微生物组数据成分分析的影响。

Impact of experimental bias on compositional analysis of microbiome data.

作者信息

Hu Yingtian, Satten Glen A, Hu Yi-Juan

出版信息

bioRxiv. 2023 Feb 13:2023.02.08.527766. doi: 10.1101/2023.02.08.527766.

Abstract

Microbiome data are subject to experimental bias that is caused by DNA extraction, PCR amplification among other sources, but this important feature is often ignored when developing statistical methods for analyzing microbiome data. McLaren, Willis and Callahan (2019) proposed a model for how such bias affects the observed taxonomic profiles, which assumes main effects of bias without taxon-taxon interactions. Our newly developed method, LOCOM (logistic regression for compositional analysis) for testing differential abundance of taxa, is the first method that accounted for experimental bias and is robust to the main effect biases. However, there is also evidence for taxon-taxon interactions. In this report, we formulated a model for interaction biases and used simulations based on this model to evaluate the impact of interaction biases on the performance of LOCOM as well as other available compositional analysis methods. Our simulation results indicated that LOCOM remained robust to a reasonable range of interaction biases. The other methods tended to have inflated FDR even when there were only main effect biases. LOCOM maintained the highest sensitivity even when the other methods cannot control the FDR. We thus conclude that LOCOM outperforms the other methods for compositional analysis of microbiome data considered here.

摘要

微生物组数据容易受到由DNA提取、PCR扩增等多种来源导致的实验偏差影响,但在开发用于分析微生物组数据的统计方法时,这一重要特征常常被忽视。麦克拉伦、威利斯和卡拉汉(2019年)提出了一个模型,用于解释这种偏差如何影响观察到的分类学概况,该模型假设偏差的主要影响且不存在分类单元间的相互作用。我们新开发的用于检验分类单元差异丰度的方法LOCOM(用于成分分析的逻辑回归),是第一种考虑实验偏差且对主要效应偏差具有稳健性的方法。然而,也有证据表明存在分类单元间的相互作用。在本报告中,我们构建了一个相互作用偏差模型,并基于此模型进行模拟,以评估相互作用偏差对LOCOM以及其他可用成分分析方法性能的影响。我们的模拟结果表明,LOCOM在合理范围内的相互作用偏差下仍保持稳健。即使仅存在主要效应偏差,其他方法的错误发现率(FDR)往往也会膨胀。当其他方法无法控制FDR时,LOCOM仍保持最高的灵敏度。因此,我们得出结论,在此处考虑的微生物组数据成分分析中,LOCOM优于其他方法。

相似文献

1
Impact of experimental bias on compositional analysis of microbiome data.
bioRxiv. 2023 Feb 13:2023.02.08.527766. doi: 10.1101/2023.02.08.527766.
2
Impact of Experimental Bias on Compositional Analysis of Microbiome Data.
Genes (Basel). 2023 Sep 8;14(9):1777. doi: 10.3390/genes14091777.
3
LOCOM: A logistic regression model for testing differential abundance in compositional microbiome data with false discovery rate control.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122788119. doi: 10.1073/pnas.2122788119. Epub 2022 Jul 22.
6
LinDA: linear models for differential abundance analysis of microbiome compositional data.
Genome Biol. 2022 Apr 14;23(1):95. doi: 10.1186/s13059-022-02655-5.
7
Compositional knockoff filter for high-dimensional regression analysis of microbiome data.
Biometrics. 2021 Sep;77(3):984-995. doi: 10.1111/biom.13336. Epub 2020 Jul 25.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验