Chu Kainian, Hu Mulin, Song Bo, Chen Senlin, Li Junyu, Zheng Fangcai, Li Zhiqiang, Li Rui, Zhou Jingya
Hefei Technology College Hefei 230011 China
Institutes of Physical Science and Information Technology and Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 China.
RSC Adv. 2023 Feb 14;13(9):5634-5642. doi: 10.1039/d2ra08135k.
Heteroatom-doped porous carbon materials have been widely used as anode materials for Li-ion and Na-ion batteries, however, improving the specific capacity and long-term cycling stability of ion batteries remains a major challenge. Here, we report a facile based metal-organic framework (MOFs) strategy to synthesize nitrogen-doped porous carbon nanofibers (NCNFs) with a large number of interconnected channels that can increase the contact area between the material and the electrolyte, shorten the diffusion distance between Li/Na and the electrolyte, and relieve the volume expansion of the electrode material during cycling; the doping of nitrogen atoms can improve the conductivity and increase the active sites of the carbon material, can also affect the microstructure and electron distribution of the electrode material, thereby improving the electrochemical performance of the material. As expected, the obtained NCNFs-800 exhibited excellent electrochemical performance with high reversible capacity (for Li battery anodes: 1237 mA h g at 100 mA g after 200 cycles, for Na battery anodes: 323 mA h g at 100 mA g after 150 cycles) and long-term cycling stability (for Li battery anodes: 635 mA h g at 2 A g after 5000 cycles, for Na battery anodes: 194 mA h g at 2 A g after 5000 cycles).
杂原子掺杂的多孔碳材料已被广泛用作锂离子和钠离子电池的负极材料,然而,提高离子电池的比容量和长期循环稳定性仍然是一个重大挑战。在此,我们报道了一种基于金属有机框架(MOFs)的简便策略,用于合成具有大量相互连接通道的氮掺杂多孔碳纳米纤维(NCNFs),这些通道可以增加材料与电解质之间的接触面积,缩短锂/钠与电解质之间的扩散距离,并缓解循环过程中电极材料的体积膨胀;氮原子的掺杂可以提高导电性并增加碳材料的活性位点,还可以影响电极材料的微观结构和电子分布,从而提高材料的电化学性能。正如预期的那样,所制备的NCNFs-800表现出优异的电化学性能,具有高可逆容量(对于锂电池负极:在100 mA g下循环200次后为1237 mA h g,对于钠电池负极:在100 mA g下循环150次后为323 mA h g)和长期循环稳定性(对于锂电池负极:在2 A g下循环5000次后为635 mA h g,对于钠电池负极:在2 A g下循环5000次后为194 mA h g)。