Kjær Emil T S, Anker Andy S, Weng Marcus N, Billinge Simon J L, Selvan Raghavendra, Jensen Kirsten M Ø
Department of Chemistry and Nano-Science Center, University of Copenhagen 2100 Copenhagen Ø Denmark
Department of Applied Physics and Applied Mathematics Science, Columbia University New York NY 10027 USA
Digit Discov. 2022 Nov 28;2(1):69-80. doi: 10.1039/d2dd00086e. eCollection 2023 Feb 13.
Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from total scattering data by using a conditional variational autoencoder. We first apply DeepStruc to PDFs from seven different structure types of monometallic nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including PDFs from nanoparticles that are not present in the training distribution. We also apply DeepStruc to a system of , and stacking faulted nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an interpolation between and nanoparticles and is able to solve stacking faulted structures from PDFs. Our findings suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials.
对于长程有序性有限的纳米结构材料,其结构解析仍然是材料开发中的一个瓶颈。我们提出了一种深度学习算法DeepStruc,它可以通过使用条件变分自编码器,直接从总散射数据获得的对分布函数(PDF)中解析出简单的单金属纳米颗粒结构。我们首先将DeepStruc应用于七种不同结构类型的单金属纳米颗粒的PDF,结果表明可以从模拟和实验PDF中解析出结构,包括来自训练分布中不存在的纳米颗粒的PDF。我们还将DeepStruc应用于由 、 和堆垛层错纳米颗粒组成的系统,在该系统中,DeepStruc将堆垛层错纳米颗粒识别为 和 纳米颗粒之间的插值,并能够从PDF中解析出堆垛层错结构。我们的研究结果表明,DeepStruc是迈向纳米材料结构解析通用方法的重要一步。