Suppr超能文献

使用真实世界数据的多重插补估计小儿炎症性肠病的临床缓解。

Using multiple imputation of real-world data to estimate clinical remission in pediatric inflammatory bowel disease.

机构信息

Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.

University of Cincinnati, Cincinnati, OH 45229, USA.

出版信息

J Comp Eff Res. 2023 Apr;12(4):e220136. doi: 10.57264/cer-2022-0136. Epub 2023 Feb 17.

Abstract

To evaluate the performance of the multiple imputation (MI) method for estimating clinical effectiveness in pediatric Crohn's disease in the ImproveCareNow registry; to address the analytical challenge of missing data. Simulation studies were performed by creating missing datasets based on fully observed data from patients with moderate-to-severe Crohn's disease treated with non-ustekinumab biologics. MI was used to impute sPCDAI remission statuses in each simulated dataset. The true remission rate (75.1% [95% CI: 72.6%, 77.5%]) was underestimated without imputation (72.6% [71.8%, 73.3%]). With MI, the estimate was 74.8% (74.4%, 75.2%). MI reduced nonresponse bias and improved the validity, reliability, and efficiency of real-world registry data to estimate remission rate in pediatric patients with Crohn's disease.

摘要

为了评估在 ImproveCareNow 注册中心中使用多重填补 (MI) 方法来估计小儿克罗恩病临床疗效的性能;解决缺失数据的分析挑战。通过基于接受非乌司奴单抗生物制剂治疗的中重度克罗恩病患者的完全观察数据创建缺失数据集来进行模拟研究。MI 用于在每个模拟数据集中推断 sPCDAI 缓解状态。在没有填补的情况下,真实缓解率(75.1% [95% CI: 72.6%, 77.5%])被低估(72.6% [71.8%, 73.3%])。通过 MI,估计值为 74.8%(74.4%,75.2%)。MI 减少了无应答偏倚,并提高了真实世界注册数据的有效性、可靠性和效率,以估计小儿克罗恩病患者的缓解率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7c/10402781/32d6915c0de6/cer-12-220136-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验