Suppr超能文献

美国食品药品监督管理局(FDA)不良事件报告系统中分组比例报告比的表现。

Performance of subgrouped proportional reporting ratios in the US Food and Drug Administration (FDA) adverse event reporting system.

作者信息

Dauner Daniel G, Zhang Rui, Adam Terrence J, Leal Eleazar, Heitlage Viviene, Farley Joel F

机构信息

Department of Pharmaceutical Care and Health Systems, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA.

Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Expert Opin Drug Saf. 2023 Jul-Dec;22(7):589-597. doi: 10.1080/14740338.2023.2182289. Epub 2023 Mar 7.

Abstract

BACKGROUND

Many signal detection algorithms give the same weight to information from all products and patients, which may result in signals being masked or false positives being flagged as potential signals. Subgrouped analysis can be used to help correct for this.

RESEARCH DESIGN AND METHODS

The publicly available US Food and Drug Administration Adverse Event Reporting System quarterly data extract files from 1 January 2015 through 30 September 2017 were utilized. A proportional reporting ratio (PRR) analysis subgrouped by either age, sex, ADE report type, seriousness of ADE, or reporter was compared to the crude PRR analysis using sensitivity, specificity, precision, and c-statistic.

RESULTS

Subgrouping by age (n = 78, 34.5% increase), sex (n = 67, 15.5% increase), and reporter (n = 64, 10.3% increase) identified more signals than the crude analysis. Subgrouping by either age or sex increased both the sensitivity and precision. Subgrouping by report type or seriousness resulted in fewer signals (n = 50, -13.8% for both). Subgrouped analyses had higher c-statistic values, with age having the highest (0.468).

CONCLUSIONS

Subgrouping by either age or sex produced more signals with higher sensitivity and precision than the crude PRR analysis. Subgrouping by these variables can unmask potentially important associations.

摘要

背景

许多信号检测算法对来自所有产品和患者的信息赋予相同权重,这可能导致信号被掩盖或误报被标记为潜在信号。亚组分析可用于帮助纠正这一问题。

研究设计与方法

利用美国食品药品监督管理局公开的不良事件报告系统2015年1月1日至2017年9月30日的季度数据提取文件。将按年龄、性别、不良事件报告类型、不良事件严重程度或报告者进行亚组分析的比例报告比(PRR)分析与使用灵敏度、特异性、精确度和c统计量的粗PRR分析进行比较。

结果

按年龄(n = 78,增加34.5%)、性别(n = 67,增加15.5%)和报告者(n = 64,增加10.3%)进行亚组分析比粗分析识别出更多信号。按年龄或性别进行亚组分析可提高灵敏度和精确度。按报告类型或严重程度进行亚组分析产生的信号较少(n = 50,两者均减少13.8%)。亚组分析的c统计量值更高,年龄亚组分析的c统计量值最高(0.468)。

结论

与粗PRR分析相比,按年龄或性别进行亚组分析可产生更多信号,且灵敏度和精确度更高。按这些变量进行亚组分析可揭示潜在的重要关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验