Department of Physics, Cornell University, Ithaca, New York 14853, USA.
Phys Rev Lett. 2023 Feb 3;130(5):051201. doi: 10.1103/PhysRevLett.130.051201.
We consider the motion of a point particle in a stationary spacetime under the influence of a scalar, electromagnetic, or gravitational self-force. We show that the conservative piece of the first-order self-force gives rise to Hamiltonian dynamics, and we derive an explicit expression for the Hamiltonian on phase space. Specialized to the Kerr spacetime, our result generalizes the Hamiltonian function previously obtained by Fujita et al. [Classical Quantum Gravity 34, 134001 (2017).CQGRDG0264-938110.1088/1361-6382/aa7342], which is valid only for nonresonant orbits.
我们研究了在标量、电磁或引力自作用力影响下,质点在静止时空中的运动。我们表明,一阶自作用力的保守部分导致哈密顿动力学,并且我们推导出相空间上哈密顿量的显式表达式。将其专门应用于 Kerr 时空中,我们的结果推广了 Fujita 等人之前获得的哈密顿函数[Classical Quantum Gravity 34, 134001 (2017).CQGRDG0264-938110.1088/1361-6382/aa7342],该函数仅适用于非共振轨道。