Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China.
JiangXi Key Laboratory of Transfusion Medicine, Nanchang 330000, China.
J Proteome Res. 2023 May 5;22(5):1501-1509. doi: 10.1021/acs.jproteome.3c00066. Epub 2023 Feb 21.
Liquid chromatography coupled with tandem mass spectrometry is commonly adopted in large-scale glycoproteomic studies involving hundreds of disease and control samples. The software for glycopeptide identification in such data (e.g., the commercial software Byonic) analyzes the individual data set and does not exploit the redundant spectra of glycopeptides presented in the related data sets. Herein, we present a novel concurrent approach for glycopeptide identification in multiple related glycoproteomic data sets by using spectral clustering and spectral library searching. The evaluation on two large-scale glycoproteomic data sets showed that the concurrent approach can identify 105%-224% more spectra as glycopeptides compared to the glycopeptide identification on individual data sets using Byonic alone. The improvement of glycopeptide identification also enabled the discovery of several potential biomarkers of protein glycosylations in hepatocellular carcinoma patients.
液相色谱串联质谱法常用于涉及数百个疾病和对照样本的大规模糖蛋白质组学研究。在这类数据中进行糖肽鉴定的软件(如商业软件 Byonic)会分析各个数据集,而不会利用相关数据集中呈现的糖肽冗余谱。在此,我们提出了一种新的方法,通过谱聚类和谱库搜索,对多个相关糖蛋白质组学数据集进行糖肽的同时鉴定。对两个大规模糖蛋白质组学数据集的评估表明,与单独使用 Byonic 对单个数据集进行糖肽鉴定相比,该同时鉴定方法可以鉴定出 105%-224%的更多糖肽谱。糖肽鉴定的改进还能够发现肝癌患者蛋白质糖基化的几个潜在生物标志物。