Suppr超能文献

骨发育不良相关的 TRPV4 突变抑制人诱导多能干细胞来源的软骨细胞的肥大分化。

Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes.

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, St Louis, United States.

Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, St Louis, United States.

出版信息

Elife. 2023 Feb 22;12:e71154. doi: 10.7554/eLife.71154.

Abstract

Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior genes and down-regulated antioxidant genes and throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.

摘要

TRPV4 离子通道的突变可导致多种骨骼发育不良。然而,TRPV4 突变导致不同疾病严重程度的机制仍不清楚。在这里,我们使用携带轻度 V620I 或致命性 T89I 突变的 CRISPR-Cas9 编辑的人类诱导多能干细胞(hiPSC)来阐明对通道功能和软骨分化的差异影响。我们发现,具有 V620I 突变的 hiPSC 衍生的软骨细胞表现出 TRPV4 增加的基础电流。然而,与野生型(WT)相比,两种突变体在对 TRPV4 激动剂 GSK1016790A 的反应中表现出更快的钙信号,而整体幅度降低。总的软骨基质产生没有差异,但 V620I 突变导致软骨基质在软骨形成后期的机械性能降低。mRNA 测序显示,两种突变体在上皮前基因上调,抗氧化基因下调和 在整个软骨形成过程中。BMP4 处理上调 WT 软骨细胞中几个必需的肥大基因;然而,这种肥大成熟反应在突变体软骨细胞中被抑制。这些结果表明,TRPV4 突变改变了软骨细胞中的 BMP 信号,并阻止了适当的软骨细胞肥大,这可能是骨骼发育功能障碍的潜在机制。我们的研究结果为开发 TRPV4 介导的骨骼发育不良的治疗方法提供了潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c242/9949800/31a520187228/elife-71154-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验