Suppr超能文献

机制体外研究表明,蛋白酶抑制剂与瑞舒伐他汀之间的临床药物相互作用是由肠道 BCRP 和肝脏 OATP1B1 的抑制驱动的,而 OATP1B3、NTCP 和 OAT3 的贡献很小。

Mechanistic in vitro studies indicate that the clinical drug-drug interactions between protease inhibitors and rosuvastatin are driven by inhibition of intestinal BCRP and hepatic OATP1B1 with minimal contribution from OATP1B3, NTCP and OAT3.

机构信息

Department of Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec Company), Macclesfield, Cheshire, UK.

出版信息

Pharmacol Res Perspect. 2023 Apr;11(2):e01060. doi: 10.1002/prp2.1060.

Abstract

Previous use of a mechanistic static model to accurately quantify the increased rosuvastatin exposure due to drug-drug interaction (DDI) with coadministered atazanavir underpredicted the magnitude of area under the plasma concentration-time curve ratio (AUCR) based on inhibition of breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 1B1. To reconcile the disconnect between predicted and clinical AUCR, atazanavir and other protease inhibitors (darunavir, lopinavir and ritonavir) were evaluated as inhibitors of BCRP, OATP1B1, OATP1B3, sodium taurocholate cotransporting polypeptide (NTCP) and organic anion transporter (OAT) 3. None of the drugs inhibited OAT3, nor did darunavir and ritonavir inhibit OATP1B3 or NTCP. All drugs inhibited BCRP-mediated estrone 3-sulfate transport or OATP1B1-mediated estradiol 17β-D-glucuronide transport with the same rank order of inhibitory potency (lopinavir>ritonavir>atazanavir>>darunavir) and mean IC values ranging from 15.5 ± 2.80 μM to 143 ± 14.7 μM or 0.220 ± 0.0655 μM to 9.53 ± 2.50 μM, respectively. Atazanavir and lopinavir also inhibited OATP1B3- or NTCP-mediated transport with a mean IC of 1.86 ± 0.500 μM or 65.6 ± 10.7 μM and 5.04 ± 0.0950 μM or 20.3 ± 2.13 μM, respectively. Following integration of a combined hepatic transport component into the previous mechanistic static model using the in vitro inhibitory kinetic parameters determined above for atazanavir, the newly predicted rosuvastatin AUCR reconciled with the clinically observed AUCR confirming additional minor involvement of OATP1B3 and NTCP inhibition in its DDI. The predictions for the other protease inhibitors confirmed inhibition of intestinal BCRP and hepatic OATP1B1 as the principal pathways involved in their clinical DDI with rosuvastatin.

摘要

先前使用机械静态模型准确量化了由于与合并使用的阿扎那韦的药物相互作用(DDI)而导致的瑞舒伐他汀暴露增加,该模型低估了基于乳腺癌耐药蛋白(BCRP)和有机阴离子转运多肽(OATP)1B1 抑制的血浆浓度-时间曲线下面积比(AUCR)的幅度。为了解决预测的 AUCR 与临床 AUCR 之间的脱节,评估了阿扎那韦和其他蛋白酶抑制剂(达鲁那韦、洛匹那韦和利托那韦)作为 BCRP、OATP1B1、OATP1B3、牛磺胆酸钠共转运蛋白(NTCP)和有机阴离子转运体(OAT)3 的抑制剂。没有一种药物抑制 OAT3,达鲁那韦和利托那韦也不抑制 OATP1B3 或 NTCP。所有药物均抑制 BCRP 介导的雌酮 3-硫酸盐转运或 OATP1B1 介导的雌二醇 17β-D-葡萄糖醛酸转运,其抑制效力的排序相同(洛匹那韦>利托那韦>阿扎那韦>>达鲁那韦),平均 IC 值范围为 15.5±2.80μM 至 143±14.7μM 或 0.220±0.0655μM 至 9.53±2.50μM,阿扎那韦和洛匹那韦也抑制 OATP1B3 或 NTCP 介导的转运,平均 IC 值分别为 1.86±0.500μM 或 65.6±10.7μM 和 5.04±0.0950μM 或 20.3±2.13μM。在使用上述阿扎那韦的体外抑制动力学参数将联合肝转运成分整合到先前的机械静态模型中之后,新预测的瑞舒伐他汀 AUCR 与临床观察到的 AUCR 一致,证实了 OATP1B3 和 NTCP 抑制在其 DDI 中的额外轻微参与。对其他蛋白酶抑制剂的预测证实了肠道 BCRP 和肝脏 OATP1B1 的抑制是它们与瑞舒伐他汀临床 DDI 的主要途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db8a/9944867/3bc775abfc30/PRP2-11-e01060-g003.jpg

相似文献

3
Calibrating the In Vitro-In Vivo Correlation for OATP-Mediated Drug-Drug Interactions with Rosuvastatin Using Static and PBPK Models.
Drug Metab Dispos. 2020 Dec;48(12):1264-1270. doi: 10.1124/dmd.120.000149. Epub 2020 Oct 9.
6
Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate.
Mol Pharm. 2019 Jun 3;16(6):2342-2353. doi: 10.1021/acs.molpharmaceut.8b01226. Epub 2019 May 13.
8
Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.
Mol Pharm. 2014 Jun 2;11(6):1844-55. doi: 10.1021/mp400699p. Epub 2014 May 6.
10
Physiologically Based Pharmacokinetic Modeling of Rosuvastatin to Predict Transporter-Mediated Drug-Drug Interactions.
Pharm Res. 2021 Oct;38(10):1645-1661. doi: 10.1007/s11095-021-03109-6. Epub 2021 Oct 18.

引用本文的文献

2
Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug-Drug Interactions.
Pharmaceutics. 2025 Feb 14;17(2):250. doi: 10.3390/pharmaceutics17020250.
3
Pharmacokinetics-Pharmacodynamics Modeling for Evaluating Drug-Drug Interactions in Polypharmacy: Development and Challenges.
Clin Pharmacokinet. 2024 Jul;63(7):919-944. doi: 10.1007/s40262-024-01391-2. Epub 2024 Jun 18.

本文引用的文献

1
Studying the right transporter at the right time: an strategy for assessing drug-drug interaction risk during drug discovery and development.
Expert Opin Drug Metab Toxicol. 2022 Oct;18(10):619-655. doi: 10.1080/17425255.2022.2132932. Epub 2022 Nov 1.
2
THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters.
Br J Pharmacol. 2021 Oct;178 Suppl 1:S412-S513. doi: 10.1111/bph.15543.
3
Real-life management of drug-drug interactions between antiretrovirals and statins.
J Antimicrob Chemother. 2020 Jul 1;75(7):1972-1980. doi: 10.1093/jac/dkaa099.
4
Statins, myalgia, and rhabdomyolysis.
Joint Bone Spine. 2020 Jan;87(1):37-42. doi: 10.1016/j.jbspin.2019.01.018. Epub 2019 Feb 6.
8
Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies.
Expert Opin Drug Metab Toxicol. 2017 Dec;13(12):1237-1250. doi: 10.1080/17425255.2017.1404028. Epub 2017 Nov 23.
9
Statin-Associated Side Effects.
J Am Coll Cardiol. 2016 May 24;67(20):2395-2410. doi: 10.1016/j.jacc.2016.02.071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验