Thompson Kyle, Stroud David A, Thorburn David R, Taylor Robert W
Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
Handb Clin Neurol. 2023;194:127-139. doi: 10.1016/B978-0-12-821751-1.00008-7.
A multidisciplinary approach to the laboratory diagnosis of mitochondrial disease has long been applied, with crucial information provided by deep clinical phenotyping, blood investigations, and biomarker screening as well as histopathological and biochemical testing of biopsy material to support molecular genetic screening. In an era of second and third generation sequencing technologies, traditional diagnostic algorithms for mitochondrial disease have been replaced by gene agnostic, genomic strategies including whole-exome sequencing (WES) and whole-genome sequencing (WGS), increasingly supported by other 'omics technologies (Alston et al., 2021). Whether a primary testing strategy, or one used to validate and interpret candidate genetic variants, the availability of a range of tests aimed at determining mitochondrial function (i.e., the assessment of individual respiratory chain enzyme activities in a tissue biopsy or cellular respiration in a patient cell line) remains an important part of the diagnostic armory. In this chapter, we summarize several disciplines used in the laboratory investigation of suspected mitochondrial disease, including the histopathological and biochemical assessment of mitochondrial function, as well as protein-based techniques to assess the steady-state levels of oxidative phosphorylation (OXPHOS) subunits and assembly of OXPHOS complexes via traditional (immunoblotting) and cutting-edge (quantitative proteomic) approaches.
长期以来,线粒体疾病的实验室诊断一直采用多学科方法,深入的临床表型分析、血液检查、生物标志物筛查以及活检材料的组织病理学和生化检测提供了关键信息,以支持分子遗传学筛查。在第二代和第三代测序技术的时代,线粒体疾病的传统诊断算法已被基因未知的基因组策略所取代,包括全外显子组测序(WES)和全基因组测序(WGS),其他“组学”技术对其的支持也越来越多(阿尔斯通等人,2021年)。无论是作为主要检测策略,还是用于验证和解释候选基因变异的策略,一系列旨在确定线粒体功能的检测方法(即评估组织活检中的个体呼吸链酶活性或患者细胞系中的细胞呼吸)的可用性仍然是诊断手段的重要组成部分。在本章中,我们总结了在疑似线粒体疾病实验室调查中使用的几个学科,包括线粒体功能的组织病理学和生化评估,以及通过传统(免疫印迹)和前沿(定量蛋白质组学)方法评估氧化磷酸化(OXPHOS)亚基的稳态水平和OXPHOS复合物组装的基于蛋白质的技术。