Nguyen Duy Khanh, Bao To Vinh, Kha Nguyen Anh, Ponce-Pérez R, Guerrero-Sanchez J, Hoat D M
High-Performance Computing Lab (HPC Lab), Information Technology Center, Thu Dau Mot University Binh Duong Province Vietnam.
Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Apartado Postal 14, Código Postal 22800 Ensenada Baja California Mexico.
RSC Adv. 2023 Feb 17;13(9):5885-5892. doi: 10.1039/d2ra08278k. eCollection 2023 Feb 14.
Doping with non-metal atoms may endow two-dimensional (2D) materials with feature-rich electronic and magnetic properties to be applied in spintronic devices. In this work, the effects of IVA-group (C, Si, and Ge) atom doping on the structural, electronic and magnetic properties of bismuthene monolayer are investigated by means of first-principles calculations. Pristine monolayer is a direct gap semiconductor with band gap of 0.56 eV, exhibiting Rashba splitting caused by spin-orbit coupling. Regardless doping level, C and Si incorporation leads to the emergence of significant magnetism, which is generated mainly by the dopants as demonstrated by the spin density illustration. Depending on the dopant nature and concentration, either half-metallic or magnetic semiconductor characters can be induced by doping, which are suitable to generate spin current in spintronic devices. Further study indicates an energetically favorable antiferromagnetic coupling in the C- and Si-doped systems, suggesting the predominant Pauli repulsion over Coulomb repulsion. Meanwhile, bismuthene monolayer is metallized by doping Ge atoms. Magnetization occurs with 12.5% and 5.56% of Ge atoms, meanwhile the non-magnetic nature is preserved under lower doping level of 3.125%. Results presented herein may introduce C and Si doping as efficient approach to functionalize non-magnetic bismuthene monolayer, enriching the family of 2D d magnetic materials for spintronic applications.
用非金属原子进行掺杂可以赋予二维(2D)材料丰富多样的电子和磁性特性,从而应用于自旋电子器件。在这项工作中,通过第一性原理计算研究了IVA族(C、Si和Ge)原子掺杂对铋烯单层结构、电子和磁性特性的影响。原始单层是一种直接带隙半导体,带隙为0.56 eV,表现出自旋轨道耦合引起的Rashba分裂。无论掺杂水平如何,C和Si的掺入都会导致显著磁性的出现,自旋密度图表明这种磁性主要由掺杂剂产生。根据掺杂剂的性质和浓度,掺杂可以诱导出半金属或磁性半导体特性,这适合于在自旋电子器件中产生自旋电流。进一步的研究表明,在C和Si掺杂体系中存在能量上有利的反铁磁耦合,这表明泡利排斥力超过库仑排斥力。同时,铋烯单层通过掺杂Ge原子而金属化。当Ge原子含量为12.5%和5.56%时会出现磁化现象,而在较低的3.125%掺杂水平下保持非磁性性质。本文给出的结果可能会引入C和Si掺杂作为使非磁性铋烯单层功能化的有效方法,丰富用于自旋电子应用的二维磁性材料家族。