J Opt Soc Am A Opt Image Sci Vis. 2023 Feb 1;40(2):388-396. doi: 10.1364/JOSAA.480814.
Since Pancharatnam's 1956 discovery of optical geometric phase and Berry's 1984 discovery of geometric phase in quantum systems, researchers analyzing geometric phase have focused almost exclusively on algebraic approaches using the Jones calculus, or on spherical trigonometry approaches using the Poincaré sphere. The abstracted mathematics of the former and the abstracted geometry of the latter obscure the physical mechanism that generates geometric phase. We show that optical geometric phase derives entirely from the superposition of waves and the resulting shift in the location of the wave maximum. This wave-based model provides a way to visualize how geometric phase arises from relationships between waves, and from the transformations induced by optical elements. We also derive the relationship between the geometric phase of a wave by itself and the phase exhibited by an interferogram, and provide the conditions under which the two match one another.
自 1956 年潘查拉特纳姆发现光学几何相位和 1984 年贝里发现量子系统中的几何相位以来,分析几何相位的研究人员几乎完全专注于使用琼斯演算的代数方法,或使用庞加莱球的球面三角学方法。前者的抽象数学和后者的抽象几何掩盖了产生几何相位的物理机制。我们表明,光学几何相位完全源自波的叠加以及波的最大值位置的变化。这种基于波的模型提供了一种可视化方法,可以了解几何相位如何从波之间的关系以及光学元件引起的变换中产生。我们还推导出了波本身的几何相位与干涉图显示的相位之间的关系,并给出了两者相匹配的条件。