Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY, USA.
Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
Trials. 2023 Feb 25;24(1):145. doi: 10.1186/s13063-023-07193-4.
The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown.
Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken.
The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach.
ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.
站立和行走这两个看似简单的任务,需要复杂的脊髓反射回路将下行运动指令与上行感觉输入进行持续整合。脊髓损伤极大地损害了站立和行走能力,但这两种能力都可以通过运动训练得到改善。然而,即使经过多次运动训练,异常的肌肉活动和协调仍然存在。因此,单纯的运动训练并不能充分优化神经元的可塑性,而这种可塑性是加强大脑、脊髓和局部回路之间连接的突触所必需的,也是根据需要增强神经元活动所必需的。经皮脊髓(transspinal)刺激通过使运动神经元更接近阈电位,从而改变多个节段的运动神经元兴奋性,这是有效促进脊髓运动网络神经调节和增强损伤人类脊髓神经连接的前提条件。重要的是,经皮脊髓刺激与运动训练同时治疗是否能最大限度地促进脊髓损伤后的运动恢复尚不清楚。
45 名慢性脊髓损伤患者接受 40 次机器人步态训练,同时在第 10 胸椎水平进行 30Hz 的经皮脊髓刺激。参与者随机接受主动或假经皮脊髓刺激 30 分钟,站立时或主动经皮脊髓刺激时仰卧位,然后进行 30 分钟的机器人步态训练。在运动训练过程中,根据每个参与者在站立阶段无膝关节弯曲和摆动阶段无脚趾拖拉的情况,调整身体重量支撑、跑步机速度和腿部引导力。在基线和完成所有治疗疗程后,记录皮质脊髓和脊髓神经兴奋性变化的神经生理学记录,以及站立和行走的临床评估测量,以及通过关于肠、膀胱和性功能的问卷评估自主功能。
这项机制随机临床试验的结果将表明,经皮脊髓刺激通过与姿势相关的皮质脊髓和脊髓神经可塑性,增强了皮质运动神经元的连接和动态神经调节。我们预计,这项机制临床试验将对临床实践产生重大影响,因为在现实的临床环境中,非侵入性的经皮脊髓刺激比侵入性的硬膜外刺激更容易和更广泛地实施。此外,通过应用多种干预措施来加速运动恢复,我们采用了一种真正反映临床方法的治疗方案。
ClinicalTrials.gov NCT04807764。注册于 2021 年 3 月 19 日。