Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China.
Proteins. 2024 Sep;92(9):1059-1069. doi: 10.1002/prot.26482. Epub 2023 Mar 2.
The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43 peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/β-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long β-sheet formation, albeit with a minor impact on the average probability of both helix structure and β-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.
转导反应 (TAR) DNA/RNA 结合蛋白 43 (TDP-43) 可以通过液-液相分离 (LLPS) 自组装成功能性应激颗粒,也可以组装成与肌萎缩性侧索硬化症密切相关的致病性淀粉样纤维状聚集物。先前的实验研究表明,TDP-43 的低复杂度结构域 (LCD) 在全长蛋白的 LLPS 和聚集中起着至关重要的作用,它本身也可以通过 321-340 区域的分子间相互作用进行 LLPS 形成液滴。与 ALS 相关的 M337V 突变会破坏 LCD 的 LLPS,并促进液-固相变。然而,其潜在的原子机制尚不清楚。在此,作为理解 M337V 突变导致 TDP-43 LCD 通过 321-340 区域介导的 LLPS 破坏以及纤维化增强的第一步,我们通过进行广泛的全原子显式溶剂置换分子动力学模拟,研究了 TDP-43 肽及其 M337V 突变体的单体/二聚体的构象特性。我们的模拟表明,M337V 突变改变了具有高螺旋/β-结构倾向的残基区域,从而影响单体和二聚体的构象集合。M337V 突变抑制了富含丙氨酸的 N 端区域和 C 端突变部位区域的螺旋形成,而促进了它们的长β-折叠形成,尽管对螺旋结构和β-结构的平均概率影响较小。对二聚体系统的进一步分析表明,M337V 突变破坏了分子间的螺旋-螺旋相互作用和 W334-W334 π-π 堆积相互作用,这被报道对 TDP-43 LCD 的 LLPS 很重要,而增强了肽残基之间的整体相互作用并减弱了肽-水相互作用,有利于肽纤维形成。该研究为 M337V 突变诱导的 TDP-43 LCD 相分离损伤和纤维形成促进提供了机制见解。