Smirnov L, Pikovsky A
Department of Control Theory, Research and Education Mathematical Center 'Mathematics for Future Technologies', Nizhny Novgorod State University, Gagarin Avenue 23, Nizhny Novgorod 603022, Russia.
Institute of Applied Physics of the Russian Academy of Sciences, Ul'yanov Street 46, Nizhny Novgorod 603950, Russia.
Philos Trans A Math Phys Eng Sci. 2023 Apr 17;381(2245):20220076. doi: 10.1098/rsta.2022.0076. Epub 2023 Feb 27.
We consider a one-dimensional array of phase oscillators coupled via an auxiliary complex field. While in the seminal chimera studies by Kumamoto and Battogtokh only diffusion of the field was considered, we include advection which makes the coupling left-right asymmetric. Chimera starts to move and we demonstrate that a weakly turbulent moving pattern appears. It possesses a relatively large synchronous domain where the phases are nearly equal, and a more disordered domain where the local driving field is small. For a dense system with a large number of oscillators, there are strong local correlations in the disordered domain, which at most places looks like a smooth phase profile. We find also exact regular travelling wave chimera-like solutions of different complexity, but only some of them are stable. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.
我们考虑通过辅助复场耦合的一维相位振荡器阵列。在熊本和巴托托克进行的开创性奇异子研究中,仅考虑了场的扩散,而我们纳入了平流,这使得耦合呈现左右不对称。奇异子开始移动,并且我们证明出现了一种弱湍流移动模式。它具有一个相对较大的同步域,其中相位几乎相等,以及一个更无序的域,其中局部驱动场较小。对于具有大量振荡器的密集系统,在无序域中存在很强的局部相关性,在大多数地方看起来像一个平滑的相位分布。我们还发现了不同复杂度的精确规则行波类奇异子解,但只有其中一些是稳定的。本文是主题为“扩展系统中模式形成和非线性动力学的新趋势”的一部分。